2nd International Conference ADAPT to CLIMATE Heraklion, 24th-25th June 2019

Different MBT Plant configurations as case studies of various EU co-financed projects Comparison in terms of performed efficiency and mitigation to climate change T. Lolos, C. Tsompanidis, E. Ieremiadi*, K. Oikonomou

> Eleni Ieremiadi, Dipl. Chemical Engineer, MSc International Projects Department ENVIROPLAN S.A.

23 Perikleous & Iras Str. 15344, Gerakas, Athens, Greece, +30 2106105127-8 e-mail: info@enviroplan.gr

ENVIROPLAN Consultants and Engineers S.A.

ENVIROPLAN S.A. provides comprehensive services in the field of waste management, energy, technical engineering and project management, starting from initial procedure planning, up to construction, supervision and client's training for project operation.

Since the philosophy of the the is company multidisciplinary approach of technical the and environmental subjects, more than 60 scientists and engineers from various disciplines are occupied in **ENVIROPLAN.**

onsultants & Engineer:

ENVIROPLAN S.A. is certified according to EN ISO 9001:2015, EN ISO 14001:2015 and OHSAS 18001:2007 and holds also a permanent professional Indemnity Insurance Contract with Llovd's.

ENVIROPLAN Consultants and Engineers S.A.

• **ENVIROPLAN S.A.** is currently active in many international environmental projects at Western Balkans, Eastern partnership countries and MENA region and more specific

		-	
10	Cyprus	✓	Armenia
	 Turkey 	\checkmark	Ukraine
1	Romania Romania A Second Action A Second Action A Second Action Second Secon	\checkmark	Kyrgyz Republic
	Croatia	✓	Kingdom of Jordan
	Serbia	✓	Lebanon
	🖉 Bulgaria	✓	Lithuania
1	North Macedonia	\checkmark	Oman
1	⁄ Azerbaijan	\checkmark	Palestine

- **ENVIROPLAN S.A.** clients are many international financing institutions and organizations as well as public governmental bodies such as:
 - ✓ European Commission (EU)
 - ✓ European Investment Bank (E.I.B.)
 - ✓ European Bank for Reconstruction and Development (E.B.R.D.)
 - ✓ World Bank (W.B.)
 - ✓ Local authorities/Ministries
 - ✓ Waste Management Organizations-Public Utility Companies
 - ✓ Private sector

Climate Change Integrated Waste Management System

There are two main components in dealing with climate change:

- Adaptation which is about dealing with inevitable consequences of climate change and attempting to lower the risks and improve resilience. Climate change Vulnerability and Risk Assessment is the process of managing climate change adaptation issues for a project in order to improve the project's resilience to climate change.
- Mitigation which is about dealing with the causes of climate change by reducing GHG emissions.

6

> '	The	e process can he	divid	ed into	the	folle	win	ng main tasks (i)
	Sen	sitivity table:	Clim	nate variable	s and h	nazard	s	v) Adaptation
]	(exc	ample)	Flood	Heat		Drou	ght	ations for the assessment,
1		On-site assets,	High	Low		Low		w the methodology will be
	ଞ	Inputs (water,)	Medium	High		Medi	um	and hazards. Tomporature
1	herr	Outputs (produts,)	High	Medium		Low		ble <i>precipitation, sea level, wind</i>
1	-	Transport links	Medium	Low		Low		ore speeds, humidity, solar radiation, flood, heat, drought
/ul		Highest score 4 themes	High	High		Medi	um	WO
sp	CUU).						
)	E	Exposure table:		Climat	e varia	ables	and h	nazards
	('example)		Flood	Heat			Drought
	C	Current climate		Medium	Low			Low
2)	F	Future climate		High	Low			Medium
	ł	Highest score, current +	future	High	Low			Medium
								ENVIROPLAN S.A.

to CLIMALE Conference

Basic requirements of Climate Adaptation Vulnerability and Risk Assessment

Sensitivity x Exposure = Vulnerability

Vulnerability ta	able: Exp	osure (curr	ent + futur	e climate)	Legend:
(example)		Low	Medium	High	Vulnerability level
Sensitivity	Low				Low
(highest,	Medium		Drought		Medium
4 themes)	High	Heat		Flood	High

- Vulnerability analysis combines sensitivity and exposures analysis.
- The most relevant climate variables and hazards are those with a high or medium vulnerability level, which are then taken forward to the risk assessment.

Risk Assessment: Aim of this task is consider the likelihood and severity of each risk affecting the success of the project.

- 1) <u>Likelihood of impact (Probability</u>). This part looks at how likely the identified climate hazards are to occur within a given timescale e.g. the lifetime of the project. The table provides a scale for assessing the likelihood of a climate hazard.
- 2) <u>Magnitude of impact (Severity)</u>. This part looks at what would happen if the identified climate hazard did occur, what would be the consequences. This should be assessed on a scale of severity per hazard. The impact analysis provides an expert assessment of the potential impact for each of the essential climate variables and hazards.

Term	Qualitative	Quantitative (*)
Rare	Highly unlikely to occur	5%
Unlikely	Unlikely to occur	20%
Moderate	As likely to occur as not	50%
Likely	Likely to occur	80%
Almost certain	Very likely to occur	95%

Scale for assessing the Impacts: potential impact of a climate hazard (example): Risk areas:	Insignificant	Minor	Moderate	Major	Catastrophic
Asset damage, engineering, operational					
Safety and health					
Environment					
Social					
Financial					
Reputation					
Overall for the above-listed risk areas					

Probability x Severity = Risk

Risk t	able: Over	all impact of the	essential cli	mate variab	les and haz	ards (example)	
		Insignificant	Minor	Moderate	Major	Catastrophic	
_	Rare				Flood		Legend:
	Uslish			Desusht			Risk lev
	Unlikely			Drought			Low
B	Moderate			Heat			Mediu
liho	Likely						High
ike.	,						Extrem
_	Almost certain						

Risk analysis combines likelihood and impact of the essential climate variables and hazards.

- **Adaptation**: Aim of this task is to manage and reduce effects of climate change to an acceptable level. Divided in two stages
- 1) Identification and appraisal of Adaptation options.
- Identification of options responding to the risks (workshops, meeting, evaluation, etc.). Adaptation may involve a mix of responses e.g. training, capacity building, monitoring, use of best practices, standards, engineering solutions, technical design, risk management etc.
- The appraisal of adaptation options should give due regard to the specific circumstances and availability of data through expert judgment or detailed cost-benefit analysis.
- 2) Integration of adaptation options.

Climate Change Mitigation GHG emissions calculations Methodology

As part of the option analysis, the quantification of each examined scenario for Integrated Waste Management System was performed according to The Carbon Footprint Methodology, that provides a series of emissions factors derived from internationally recognized sources, e.g. GHG Protocol and IPCC Guidelines for National GHG Inventories.

The calculation of the GHG emissions included:

- Both direct and indirect GHG emissions from the different components of the waste management system
- GHG emissions, Avoided GHG emissions and Net GHG emissions of an incremental approach (with-without project scenario)

Scope of GHG emissions produced by different waste management activities

		- (12)	
Activity	Net direct GHG emissions (scope 1)	Indirect GHG emissions (scope 2)	Avoided GHG emissions
Material Recover y Facility (MRF)	CO_2 from fuels consumed in waste collection and transportation to and from the facility CO_2 from fuels consumed in waste treatment facility	CO ₂ from grid electricity consumption	CO ₂ avoided through material recovery from waste and recycling
	CO_2 from fuels consumed in waste collection and transportation to and from the facility	CO ₂ from grid electricity consumption	CO ₂ avoided through material recovery from waste and recycling
MBT	CH_4 and N_2O in anaerobic processes during biological treatment		CO ₂ avoided through energy recovery from incineration of RDF/SRF produced from mixed waste
	CO_2 from fuels consumed in waste treatment facility (i.e. by vehicles)		CO ₂ avoided through energy recovery from combustion of biogas produced in anaerobic digestion
Landfill	CO_2 from fuels consumption in waste collection and transportation to and from the facility CH_4 from landfill	CO ₂ from grid electricity consumption	CO ₂ avoided through energy recovery from landfill gas
	CO_2 from fuels consumed on the landfill site (i.e. by vehicles)		
Source: J 2013	aspers, Staff working papers, Calculatio	n of GHG Emissions in	Waste and Waste-to-Energy Projects,
a 2CLIMA		IO CLIMATE COMETCH	

Methodology

To quantify the European Investment Bank (EIB) carbon footprint for investment projects and the associated relative emissions compared to the baseline the following series of activities must be followed:

Methodology

To quantify the European Investment Bank (EIB) carbon footprint for investment projects and the associated relative emissions compared to the baseline the following series of activities must be followed:

Methodology

To quantify the European Investment Bank (EIB) carbon footprint for investment projects and the associated relative emissions compared to the baseline the following series of activities must be followed:

Basic Assumptions

For the GHG emissions calculation, the following specific assumptions were used:

- Carbon contents of MSW
- GHG emissions from waste collection and transportation
- > GHG emissions from waste treatment
- Avoided GHG emissions through recycling of recovered materials
- > Avoided GHG emissions through recovery of energy from waste

EU funded project:

"Preparation of necessary documents for establishing of an Integrated and Financially Self-sustainable Waste Management System in Pelagonija, Southwest, Vardar and Skopje Regions"

Project Background

EU funded project:

"Preparation of necessary documents for establishing of an Integrated and Financially Self-sustainable Waste Management System in Pelagonija, Southwest, Vardar and Skopje Regions",

Financing	EU
Contracting Authority	Central Financing and Contracting Department (CFCD) within the Ministry of Finance
Target groups-Beneficiaries	-MoEPP -Intermunicipal Waste Management Board of the Pelagonija, Southwest, Vardar and Skopje regions -43 municipalities in the 4 regions
Project duration	24 months (12/2015-12/2017)

Project Components

Component nº 1: Regional Waste Management Plan (RWMPs) for each region;

Component nº 2: Strategic Environmental Assessment (SEA) Report for each region;

Component nº 3: Feasibility Study (FS) for each region;

Component nº 4: Cost-Benefit Analysis (CBAs) for each region

Component nº 5: Environmental Impact Assessment (EIA) Study on the basis of the Feasibility study for each region

Component nº 6: Detailed Design and Cost estimation for closure, rehabilitation and after care of municipal non-compliant landfills and dumpsites and for construction of selected waste treatment and disposal facilities for each region;

Component nº 7: Need assessments, market analyses with costs estimations and Technical Specifications (TSs) for **supply of equipment for waste collection and transferring of waste** for each region;

Component nº 8: Tender Dossiers for the works contracts for closure, rehabilitation and after care of municipal non-compliant landfills and dumpsites and for construction of selected waste treatment and disposal facilities for each region

Component nº 9:

Stakeholder Involvement (incl. publicity & visibility)

North Macedonia

consists of 8 regions and 80 municipalities with a population of 2.07 million

has a surface area of 25,713 km^2

borders Albania Kosovo, Serbia, Bulgaria and Greece

National Legislation/Law on packaging and packaging waste

According article 35 (National aims for treatment of packaging waste), paragraphs (1) b, (1) c & (1) d of Law on management of Packaging and Packaging waste the following should be fulfilled

- By the end of the year 2020, a minimum of 55% and a maximum of 80% of the weight of packaging waste created on the territory of the Republic of North Macedonia needs to be recycled
- By the end of the year 2020, the following percentages of materials where from the packaging waste is produced need to be recycled
- ✓ 60% glass
- ✓ 60% paper and cardboard
- ✓ 50% metals
- ✓ 15% wood
- By the end of the year 2018 22,5% plastic, considering only the recyclable materials in the plastic

Year	Quantity of BMW landfilled, expressed as a mass percentage of MSW generated in 1995	Reduction of the quantity of BMW landfilled, expressed as a percentage reduction of the BMW generated in 1995
Reference year 1995	62%	
2017	47%	25%
2020	31%	50%
2027	22%	65%

2nd ADAPT to CLIMATE Conference

	Alte	ernativ Pel	ve exam agonija	ined sc , Southy	enarios west reg	for Va gions	rdar,		
				24)					
	Scenario (1 bin)	1		Scenario 2 (2 bins)	Scenario 3 (2 bins)			Scenario 4 (3 bins)	
	1a 1 (MBT) (A	b MBT with AD)	1c (Incineration)	2 (MRF+ Aerobic Composting)	3a (MRF+ Aerobic Composting)	3b (MRF+ Anaerobic Digestion)	3c (MRF + MBS)	4 (MBT)	
Waste Collection	One Bin co	ollection syst	em	Two Bin collection system (Organic Waste Bin and Mixed Bin)	Two Bin collec Waste Bin and I	tion system (Mixed Bin)	Recyclable	Three collection system	Bin
Green Points	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Home Compostin g	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark	V	-	
Mixed Bin Treatment	Mechanica l Biologica Treatment (MBT) wit Aerobic Compostir g	a Mechanic al l Biologic Treatmen h (MBT) wi Anaerobic n Digestion	a Incineration al t th	MRF	MBT with aerobic composting	MBT with anaerobic digestion	MBS (Biostabi lization)	Disposal Landfill	to
Recyclable waste bin treatment	-	-	-	-	MRF	MRF	MRF	MRF	
Organic waste bin	-	-	-	Aerobic Composting	-	-	-	Aerobic Composting	

Multi-Criteria Analysis (MCA)

25

PROMETHEE MCA method used in order to evaluate the different waste management scenarios. The analysis involves three main phases (a) the setting of criteria, (b) the weighting of criteria, (c) the ranking of alternative schemes

The groups of criteria and individual criteria that was examined are presenting in the

Financial		Te	echnical			Environm	iental		Social-I	nstitutior	nal
(F1) Investme cost	ent	(T w	1) Flexibility aste quantity	y regarding y		(E1) Air po	ollution		(S1) App of legisla	lication of tion	priority
(F2) Net operational c	ost	(T w	(T2) Flexibility regarding waste quality		(E2) Generation of waste water		(S2) Possibility of crea of new jobs		creation		
(F3) Econom sustainability	ic 7	(T	3) Simplicity	ty		(E3) Gene waste resi	3) Generation of solid aste residues			(S3) Degree of fulfillment o targets	
		(T	(4) Energetic	exploitatio	n	(E4) Toxic	ity of residu	es	(S4) Pub	lic accepta	ance
		(T	5) Recovery	of material	S				(S5) Tran condition	nsition to f Is	future
			Technical	Weights	Fnv	ironmenta	Weights	So	cial-	Weight	The
Financial Criteria	Weight s %			25%	l Cri	iteria	%	al	Criteria	5 /0	weights of
F1	25%		т Т	25%	E1		30%	S1		20%	each sub- criterion
F2	40%		12 T3	20%	E2		30%	S2		10%	have been
F3	35%		тл	15%	E3		20%	S3		30%	determined
			14 T5	15%	E4		20%	S4		25%	
ÁDAPT			15	2 nd A D A P	T to C		nference	S 5		15%	OPLAN S.A.

elected Wa	aste Manage	ement Scen	arios in eac		
	Reg	gion			
		26			
Regions	Pelagonija	Vardar	Southwest		
Waste Collection	Two Bin collection system (Recyclable Waste Bin and Residual Waste Bin)	Two Bin collection system (Recyclable Waste Bin and Residual Waste Bin)	Two Bin collection system (Recyclable Waste Bin and Residual Waste Bin)		
Green Points	√ 691 t/y	√ 398 t/y	√ 687 t/y		
Home Composting	√ 2,174t/y	√ 1,214t/y	√ 2,002t/y MBT with anaerobic digestion followed by aerobic composting 41,668t/y		
Residual Waste Bin Treatment	MBT with anaerobic digestion followed by aerobic composting, 54,011t/y	MBS (Biostabilization) 28,503t/y			
Recyclable waste bin treatment	MRF, 15,096t/y	MRF, 8,556t/y	MRF, 13,874t/y		
Green waste treatment	Aerobic Composting, 5,755t/y	Aerobic Composting, 2,301t/y	Aerobic Composting, 3,591t/y		
Landfill	√ 21,086 t/y	√ 23,349 t/y	√ 34,167 t/y		

Regions	Pelagonija	Vardar	Southwest
Products (t/y)			
Compost	√ 3,453t/y	√ 1,381t/y	√ 2,155
RDF	√ 10,802t/y		√ 8,834t/y
SRF			
Recyclables	√ 15,919t/y	√ 7,470t/y	√ 14,902t/y
Biogas	√ 4,957t/y		√ 3,748t/y

ENVIROPLAN S.A. Consultants & Engineers

2nd ADAPT to CLIMATE Conference

Consultants & Engineers

2nd ADAPT to CLIMATE Conference

ENVIROPLAN S.A. Consultants & Engineers

Recommended options for IWMS-Vardar Region 29 14.72% 22.08% 1.93 % H₂O & CO₂ losses Separate collection CLO 20.45% 6,159 t/y (heavy fraction) of other waste streams 9,239 t/y 807 t/y Recyclable Waste Bin 8,556 t/y 88.60% 55.82% 33.73% MRF Residues Landfill Two-Bins 14,110 t/y Total waste 23,349 t/y 100% **Collection System** 68.14% MBS 41,829 t/y 37,059 t/y Residual Waste Bin 0.19% 28,503 t/y 17.85% 0.95% Special municipal waste Green Points Recyclables 81 t/y 398 t/y 7,470 t/y 0.11% 2.90% [assumptions: (1) 20% of rural population is served (20%*28,7%=5,7%) 3.30% (2) Biodergedables for HC calculated Hazardous waste Home Composting as the 5,7% of Garden waste+Biodegredable waste) 50 t/y Compost 2.19% 1,214 t/y 1,381 t/y 1,0 & CO, losses 920 t/y 5.50% [collected 40% of Green waste] Green Waste Windrow 2,301 t/y composting

2nd ADAPT to CLIMATE Conference

ENVIROPLAN S.A. Consultants & Engineers

Climate Change Mitigation Analytical GHG Emission Calculations (Southwest region) Without project scenario

30

\bigcirc		
Mixed Waste from Households		
GHG emissions from waste collection and transport (t	438	
CO ₂ (eq))		
GHG emissions from waste treatment (t CO ₂ (eq))		
GHG emissions from landfills (t CO ₂ (eq))	21,779	
GHG emissions avoided through recycling of materials		
recovered from waste (t CO ₂ (eq))		
GHG emissions avoided through recovery of energy		
from waste (t CO ₂ (eq))		
TATH WITHOUT PROJECT COENTRIA ON CHARGONIC	7 2 2 2	
GHG emissions		

2046), in t CO₂ (eq), for the different components of the waste management system in the baseline (withoutproject) scenario.

438 GHG emissions, avoided GHG emissions and Net GHG emissions (average 2021-2046), in t CO₂ (eq), for the different components of the

Climate Change Mitigation Analytical GHG Emission Calculations (Southwest region) With project scenario GHG emissions

\bigcirc		
Mixed Waste from Households		
GHG emissions from waste collection and transport (t $CO_2(eq)$)	372	
GHG emissions from waste treatment (t CO ₂ (eq))	3,074	
GHG emissions from landfills (t CO ₂ (eq))	2,114	
GHG emissions avoided through recycling of materials recovered from waste (t $CO_2(eq)$)	-17,652	
GHG emissions avoided through recovery of energy from waste (t $CO_2(eq)$)	-4,178	
	10 707	
GHG emissions With project scenario		

7,500 6.000 4,500 3,000 1,500 -1,500Mixed Waste from Households -3,000 -4,500 CO2(eq)/vea -6,000 -7,500 -9,000 -10,500-12,000-13,500 -15,000-16,500-18,000-19,500-21,000-22,500 Debits Credits Net

GHG emissions. avoided GHG emissions and Net GHG emissions (average 2021-2046), in t CO₂ (eq), for the different components of the waste management system in the with-project scenario.

2nd ADAPT to CLIMATE Conference

GHG emissions for each examined scenario-All regions

Regions	Southwest	Pelagonija	Vardar
	Quantification of GHG emissions (With		
		project)	
Total t CO ₂ (eq) /year (Net)	-16,271	-12,023	-3,609
	Quantificati	on of GHG emi	ssions (Without
	project)		
Total t CO ₂ (eq) /year (Net)	22,217	20,352	14,471
	Quantification of GHG emissions (Incremental approach=With-Without project)		
Total t CO ₂ (eq) /year (Net)	-38,488	-32,375	-18,080

EU funded project:

"Feasibility study for development of the integrated and sustainable waste management system in Dubrovnik - Neretva County "

EU funded project:

"Feasibility study for development of the integrated and sustainable waste management system in Split- Dalmatia County "

EU funded project:

"Feasibility study for development of the integrated and sustainable waste management system - Waste Management Center Babina Gora, Karlovac "

Project background

Project background

36

- Financing: Environmental Protection and Energy Efficiency Fund (EPEEF)
- Contracting authority: County of Dubrovnik-AGO doo
- Contractor: ENVIROPLAN S.A., Brodarski Institute d.o.o., Procurator Vastitatis d.o.o.
- Year of assignment: 2014
- Subject: Feasibility Study, Cost Benefit Analysis, Application Form

Targets to be achieved according NWMP 2017-2022

Option analysis for Waste Management Centre Technology in DNC

Proposed Scenarios	Description
Scenario 1	Mechanical separation with recovery of Recyclables and RDF and aerobic composting for CLO production
Scenario 2	Mechanical separation with recovery of Recyclables and RDF, wet AD with electricity production and dewatering of digestate
Scenario 3	Biodrying for production of low quality SRF and mechanical separation with recovery of Fe/Al
Scenario 4	Mechanical Separation with recovery of recyclables and RDF, dry fermentation with electricity and heat production and bio- stabilization of digestate (Hybrid MBT)

Option analysis for Waste Management Centre Technology in SDC

Proposed Scenarios	Description		
Scenario 1	Mechanical separation with recovery of Recyclables and RDF and aerobic composting for CLO production		
Scenario 2	 Mechanical separation with recovery of Recyclables and RDF, AD with electricity production and further Aerobic Composting for production of CLO 		
Scenario 3	Mechanical separation with recovery of Recyclables and RDF and biodrying for SRF production		
Scenario 4A	Biodrying for production of low quality SRF and mechanical separation with recovery of Fe/Al		
Scenario 4B	Biodrying for production of high quality SRF and mechanical separation with recovery of Fe/Al		
Scenario 5	Thermal Treatment unit (mass burn incineration) with electricity production		

Option analysis for Waste Management Centre Technology in Karlovac County

Proposed	Description
Scenario 1	Mechanical separation with recovery of Recyclables and RDF and aerobic composting for CLO production
Scenario 2	Mechanical separation with recovery of Recyclables and RDF, AD with electricity production and further Aerobic Composting for production of CLO
Scenario 3	Mechanical separation with recovery of Recyclables and RDF and biodrying for SRF production
Scenario 4	Biodrying for production of low quality SRF and mechanical separation with recovery of Fe/Al

2nd ADAPT to CLIMATE Conference

ENVIROPLAN S.A. Consultants & Engineers

Mass Balance/Residual Waste bin SDC

Groups of criteria used for the option analysis

A. LEGISLATIVE CRITERIA	B. ENVIRONMENTAL CRITERIA	C. TECHNOLOGICAL CRITERIA	D. FINANCIAL CRITERIA	
A.1. Compatibility with European and National legislation a	B.1. Air Pollution: dust and odours and contribution to GHG emissions	C.1. Adaptability of the process towards the future volume fluctuation and quality of waste	D.1.Construction cost – Investment cost	
A.2. Compatibility with procurement procedures under the rules of the EU	B.1. Air Pollution: dust and odours and contribution to GHG emissions	C.2. Proven technology – guarantee of operational excellence	D.2. Net operational cost	
	B.3. Noise	C.3. Need of skilled personnel - Employment of local population	D.3. Economic sustainability	
	B.4. Area requirements for the sitting of facilities	C.4. Existence of a market for the use of the finished product		
	B.5. Mitigation measures in the environment	C.5. Exploitation – Energy efficiency		
		C.6. Management of by- products		
2 nd ADAPT to CLIMATE Conference				

Results Climate Change Mitigation/GHG emissions for each examined scenario – IWMS DNC

46

	Scenario 1	Scenario 2	Scenario 3	Scenario 4
	Quantification of GHG emissions in all scenarios (With project)			
Total t CO ₂ (eq) /year (Net)	-23,274	-24,142	-16,225	-24,432
	Quantification of GHG emissions in all scenarios (Without project)			
Total t CO ₂ (eq) /year (Net)	12,797	12,797	12,797	12,797
	Quantification of GHG emissions in all scenarios (Incremental approach=With-Without project)			
Total t CO ₂ (eq) /year (Net)	-36,072	-36,939	-29,023	-37,230

Scenario 4 is the recommended scenario, which includes:

- mechanical separation with recovery of Recyclables and RDF,
- dry fermentation with electricity and heat production and
 - biostabilization of digestate.

Analytical GHG Emission Calculations Without project scenario

Mixed Waste from Households	
GHG emissions from waste collection and transport (t	454
CO ₂ (eq))	
GHG emissions from waste treatment (t CO ₂ (eq))	19
GHG emissions from landfills (t CO ₂ (eq))	17,413
GHG emissions avoided through recycling of materials	-2,422
recovered from waste (t CO ₂ (eq))	
GHG emissions avoided through recovery of energy	
from waste (t CO ₂ (eq))	
Total net GHG emissions (t CO ₂ (eq))	15,463
Bulky waste from households	
GHG emissions from waste collection and transport (t	27
CO ₂ (eq))	
GHG emissions from waste treatment (t CO ₂ (eq))	250
GHG emissions from landfills (t CO ₂ (eq))	12
GHG emissions avoided through recycling of materials	-2,957
recovered from waste (t CO ₂ (eq))	
GHG emissions avoided through recovery of energy	
from waste (t CO ₂ (eq))	
Total net GHG emissions (t CO ₂ (eq))	-2,666
TOTAL WITHOUT PROJECT SCENARIO GHG EMISSIONS	12,797
(t CO ₂ (eq))	

GHG emissions, avoided GHG emissions and Net GHG emissions (average 2020-2044), in t CO_2 (eq), for the different components of the waste management system in the baseline (withoutproject) scenario.

Analytical GHG Emission Calculations With project scenario

48

Mixed Waste from Households	
GHG emissions from waste collection and transport (t	362
CO ₂ (eq))	
GHG emissions from waste treatment (t CO ₂ (eq))	1,128
GHG emissions from landfills (t CO ₂ (eq))	1,745
GHG emissions avoided through recycling of materials	-23,519
recovered from waste (t CO ₂ (eq))	
GHG emissions avoided through recovery of energy from	-1,482
waste (t CO ₂ (eq))	
Total net GHG emissions (t CO ₂ (eq))	-21,766
Bulky waste from households	
GHG emissions from waste collection and transport (t	27
CO ₂ (eq))	
GHG emissions from waste treatment (t CO ₂ (eq))	250
GHG emissions from landfills (t CO ₂ (eq))	12
GHG emissions avoided through recycling of materials	-2,957
recovered from waste (t CO ₂ (eq))	
GHG emissions avoided through recovery of energy from	
waste (t CO ₂ (eq))	
Total net GHG emissions (t CO ₂ (eq))	-2,666
TOTAL WITH PROJECT SCENARIO GHG EMISSIONS (t	-24,432
CO ₂ (eq))	

GHG emissions, avoided GHG emissions and Net GHG emissions (average 2020-2044), in t CO₂ (eq), for the different components of the waste management system in the with-project scenario (Sc4).

Analytical GHG Emission Calculations Incremental Approach

Incremental GHG emissions can be calculated if we subtract the GHG emissions in with project scenario from GHG emissions without project scenario.

TOTAL INCREMENTAL GHG EMISSIONS (t	-37,230
CO ₂ (eq))	

Summarized results

➤ The quantification of GHG emissions for each examined scenario of the project and also for the without project scenario has been implemented taking into consideration the **Carbon Footprint Methodology.** The scenario that ranked as the better solution - Sc4 - had the best performance regarding GHG emissions.

The percentage of reduction in year 2044 in greenhouse gas (GHG) emissions with the scenario of the implementation of the project, compared by year 2013 year, has been calculated to 301%.

	With Project Scenario	2013	2015	2020	2025	2030	2035	2040	2044
	Net GHG emissions	12,03 9	9,909	- 24,22 2	- 24,22 4	- 24,40 5	- 24,52 7	- 24,63 8	- 24,67 8
T p n	roject whic nodel.	l <mark>G emis</mark> h have	sions f been c	r <mark>om 20</mark> alculat	13 to 2 ed by J	044, fro asper's	om the calcula	presen ation	t

Climate Resilience Process: Addressing Climate Change in the development of major projects

Module 1: Identification of the climate sensitivities of the project

Module 2: Evaluation of exposure to climate hazards

Module 3: Assess vulnerability

Module 4: Assess risks

Module 5: Identification of adaptation options

1 - 100

We have a fear of the

10 150

Module 6: Appraisal of adaptation options

Temperature Change by 2100 Projected change in median annual temperature by the end of the 21st century, scenario B1 (in °C)

) +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 Source: Climate Change Knowledge Portal

climate

										Clim	atevi	ariable	s/ d	imate-	relate	d haza	ards								
Project type	Sensitivity theme	In reneniai air ten penature in ruease	Buencienperatureintrease	In Jerrerical rairifali u large	Bùran erainiai change	All er aye wir ici speed	M axii i ui i wii i di speed	Hurridity	Scian radiation	Relative sea level rise	Seawater terriperature	Water availability	ST.1115	Flouding (ယဆဲ့င်္ခာ ရီ ကျပားချိ	O tean I piri	Disi sione	Crasial erosion	Siieusiun	Sc ii saiiity	Widfie	Ai quality	Giouriu'ii stability/ larusiutes	Ul ban i teat island	G uwii iy seasu i	
Exposure to bas	eline/observed dimate																								
	On-site assets and processes																								
Waste	Inputs (water, energy, others)																								
Center	Outputs (products and markets)	k																							
	Transport links																								
					Climat	e sensit	ivity			NO		MEDIU	Ŋ	HIC	H										
				2^{nd}	ADA	٩РТ	to C	o CLIMATE Conference								ENVIROPLAN S.A. Consultants & Engineers									

Module 2: Assess exposure to future climate

									dima	ate va	riables	i/ di	mate-r	elate	d haza	rds								
	Sensitivity theme	ווידפורפורפו מו נפורף פיתו ביות במצב ביו פורא הפורף פיתו ביות במצב	ln גורו ווימו המווימיו המוויסים ווימו המוויסים ווימו ווימו המוויסים ווימו ווימו המוויסים ווימו המוויסים ווימו ה	Biren erainiai diange	An eraye wirnd speed	ivi axir nur n wir nu sp ec u	ที่ แก่เดียง	Sciar radiation	Reliative sea level rise	Seawater terriberature	Water availability	St JIIIb	Houing (wastal & fluvial)	Q. tear 1 piri		atial el usion n	Scii erosion	Sc ii saiiity	Wiufire	Ai quality	G'our tu'it istability/ lar tubildes	Ur barri reat islarıci	Gi uwii iy seasui i	
Exposure	to future climate																							
Waste Management Center	On-site assets and processes Inputs (water, energy, others) Outputs (products and markets) Transport links																							
				Climate	esensitiv	ity		N	10	Ν	1EDIUM		HG	Η									NC	
ADAPT		2 nd ADAPT to CLIMATE Conference												ingineer	s.									

Module 4: Assess Risk

Risk = Likelihood x Impact

OPLAN S.A.

Probability			Sev	erity	
Rare	Highly unlikely to occur	0-5%	1	Insignifica nt	No relevant effect on social welfare, even without remedial actions
Unlikely	Unlikely to occur	5-20%		Minor	Minor loss of the social welfare generated by the project, minimally affecting the project long run effects. However, remedial or corrective actions needed
Moderate	As likely to occur as not	20- 50%		Moderate	Social welfare loss generated by the project, mostly financial damage, even in the medium-long run. Remedial actions may correct the problem
Likely	Likely to occur	50- 80%	IV	Critical	High social welfare loss generated by the project: the occurrence of the risk causes a loss of the primary functions of the project. Remedial actions, even large in scope, are not enough to avoid serious damage
Almost certain	Very likely to occur	80- 95%	V	Catastroph ic	Project failure that may result in serious or even total loss of the project functions. Main project effects in the medium-long term do

Module 5 & 6: Identification and appraisal of adaptation options for environmental infrastructures

improved monitoring or emergency response programmes, staff training and skills transfer activities, development of strategic or corporate climate risk assessment frameworks, financial solutions

modifications to the design or specification of physical assets and infrastructure, or the adoption of alternative or improved solutions: Temperature changes Biological process technology options Rainfall change Flood protection works adaptation Wild fires Extensive fire fighting networks and

rgency plans

Documentation used for the implementation of the project What is JASPERS?

59

✓ Guide to Cost-Benefit Analysis of Investment Projects, Economic Appraisal tool for Cohesion Policy 2014-2020, European Commission, Directorate-General for Regional and Urban policy, December 2014.

✓ Jaspers Staff Working Paper on Mechanical-Biological Treatment Plants

✓ Jaspers Staff Working Paper on Public Consultation on Waste Management Projects

✓ JASPERS Staff Working Papers, Calculation of GHG Emissions in Waste and Waste-to-Energy Projects, Dorothee Teichmann & Christian Schempp, November 2013 (revised version).

✓ EIB Induced GHG Footprint, The carbon footprint of projects financed by the Bank, Methodologies for the Assessment of Project GHG emissions and Emissions Variations, Version 10.1

✓ EC/DGENV/AEA Study 2001 (Waste Management Options and Climate Change, 2001)

•is managed by the **European Investment** Bank (EIB) and cosponsored by the **European Commission** (EC) and the European **Bank for Reconstruction** and Development (EBRD) provides technical expertise for any stage of the project cycle, covering technical, economic and financial questions geared to provide advice, ensuring coordination, developing and reviewing project structures, removing bottlenecks, filling gaps and identifying problem in project preparation, to help improve the quality of the major projects to be submitted for grant financing

