Assessing climate change impacts on drought severity in Mediterranean islands using the Standardized Precipitation Evapotranspiration Index (SPEI)

D. Charchousi¹, M.P. Papadopoulou¹, C. Papadaskalopoulou², A. Karali³, C. Giannakopoulos³ and M. Loizidou²

¹Laboratory of Physical Geography and Environmental Impacts, School of Rural and Surveying Engineering, NTUA
²Unit of Environmental Science & Technology, School of Chemical Engineering, NTUA
³Institute for Environmental Research and Sustainable Development, NOA
Introduction

• Climate change and drought
• Drought and impacts on surface water availability
• Need for drought analysis and monitoring taking into account precipitation and potential evapotranspiration (PET)

• Aim of the study:
 ✓ Assessing the impacts of climate change on drought events in Crete, Cyprus and Sicily by estimating the SPEI
 ✓ Investigating correlation between SPEI values & dam water availability
Standardized Precipitation Evapotranspiration Index (SPEI)

• A **drought index** based on climatic data (Vicente-Serrano et al., 2010)
• Extension of the widely used Standardized Precipitation Index – SPI
• Determining intensity, magnitude, duration of drought conditions **with respect to normal conditions**
• SPEI captures **precipitation and temperature fluctuations** and trends
• Estimated based on the difference between **precipitation and PET**
• Represents a **simple water balance**
• SPEI<0 indicate **dry** periods
Methodology

• Implementation areas: mainly near dams used for irrigation purposes
• Studied period: 1972-2098
• SPEI R Package (Begueria and Vicente-Serrano, 2017)
• Climatic data for the period 1972-2004: gridded observational data from the EOB-S dataset
• Climatic data for the period 2005-2098: RCA4 Regional Climate Model, driven by the Hadley Centre Global Environmental Model version 2 Earth System of the Met Office Hadley Centre (MOHC)
• RCP scenarios: 4.5 & 8.5
SPEI variation under the pressure of climate change

Reference period: 1972-2004

Future period: 2005-2098

ΔSPEI:
$\text{SPEI}_{(2031-2060)} - \text{SPEI}_{(1972-2000)}$
Implementation areas in Crete

(a) Faneromeni Dam area

(b) Ayia area
Results - SPEI evolution from 1972 to 2098 in Crete

Faneromeni Dam

<table>
<thead>
<tr>
<th></th>
<th>RCP 4.5</th>
<th>RCP 8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔSPEI</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Ayia

<table>
<thead>
<tr>
<th></th>
<th>RCP 4.5</th>
<th>RCP 8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔSPEI</td>
<td>-0.8</td>
<td>-0.7</td>
</tr>
</tbody>
</table>
Implementation areas in Cyprus

(a) Asprokremos Dam area (b) Kiti Dam area (c) Kouris Dam area
Results - SPEI evolution from 1972 to 2098 in Cyprus

Asprokremos Dam

<table>
<thead>
<tr>
<th>ΔSPEI</th>
<th>RCP 4.5</th>
<th>RCP 8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.8</td>
<td>-0.9</td>
<td></td>
</tr>
</tbody>
</table>

Kiti Dam

<table>
<thead>
<tr>
<th>ΔSPEI</th>
<th>RCP 4.5</th>
<th>RCP 8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.2</td>
<td>-0.4</td>
<td></td>
</tr>
</tbody>
</table>
Results - SPEI evolution from 1972 to 2098 in Cyprus

Kouris Dam

<table>
<thead>
<tr>
<th>∆SPEI</th>
<th>RCP 4.5</th>
<th>RCP 8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-1.3</td>
<td>-1.3</td>
</tr>
</tbody>
</table>

- RCP 4.5
- RCP 8.5
Implementation areas in Sicily

(a) Poma Dam area

(b) Moganazzi area
Results - SPEI evolution from 1972 to 2098 in Sicily

Moganazzi

<table>
<thead>
<tr>
<th>ΔSPEI</th>
<th>RCP 4.5</th>
<th>RCP 8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.2</td>
<td>-1.0</td>
<td></td>
</tr>
</tbody>
</table>

Poma Dam

<table>
<thead>
<tr>
<th>ΔSPEI</th>
<th>RCP 4.5</th>
<th>RCP 8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.7</td>
<td>-0.6</td>
<td></td>
</tr>
</tbody>
</table>
Results - SPEI and dam storage

SPEI (in blue/red) and real storage (in grey) of Asprokremos Dam (1988-2004)
Conclusions

• A significant **decline** of SPEI is observed in representative areas in the Mediterranean basin.

• A long base period (30-50+ years) should be used.

• The correlation within reservoir storage and SPEI may consist a tool for a **preliminary impact assessment** of future droughts events on reservoirs storage.
References

Acknowledgements

The authors would like to acknowledge the European financial instrument for the Environment, LIFE, for the financial support in the framework of the ADAPT2CLIMA project LIFE14 CCA/GR/000928.
Thank you for your attention.