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Abstract  

The amount of water on earth is the same, only the distribution and the reallocation of water 

forms are altered in both time and space. To improve the rainwater harvesting a better 

understanding of the hydrological cycle is mandatory. Clouds are major component of the 

hydrological cycle, therefor, clouds distribution is the keystone of better rainwater harvesting 

and preserving of soil water content. Remote sensing technology have showed robust 

capabilities in resolving challenges of water resource management, in the countries like 

kingdom of Saudi Arabia where rapid population growth is imposing stress on scarce water 

resources. Soil moisture content and cloud average distribution is essential remote sensing 

application in extracting information of geophysical, geomorphological and meteorological 

interest from satellite images. Current research study aimed to map the soil moisture content 

of Southern West Region of KSA using recent Landsat 8 images and cloud average distribution 

of the corresponding area using 59 MERIS satellite imageries collected from January 2006 to 

October 2011. Could average distribution map shows specific location in the study area where 

it’s always cloudy all over the year and the site corresponding soil moisture content map came 

in agreement with cloud distribution. The overlay of the two previously mentioned maps over 

the geological map of the study area shows suitable locations for better rainwater harvesting 

embodied in increase groundwater recharge feasibility. 
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1. Introduction 

Water Cycle or the Hydrological Cycle assure that the quantity of water in the earth’s 

environment under no circumstances vicissitudes, regardless the state of the water as a liquid, 

gas or it’s in its solid state. Water repetitively circulates between the land, the oceans and the 

atmosphere.  

Adequate water management is founded on understanding the interconnections in the 

hydrological cycle. Informative knowledge of the designated catchment water balance is 

needed (Elhag et al., 2011). Catchment area by definition is the total area of terrestrial which 

catches rainfall and contributes the placid water to a certain surface water or potential 

groundwater recharge (Prada et al., et al., 2010). 

In semi-arid regions climates, there is no accurate estimation of groundwater recharge. Existing 

estimation is based on the difference between the total amounts of rainfall and actual 

evapotranspiration due to indeterminate statistics of similar extents. Therefore no reliable 

information concerning absolute values of recharge can be obtained by the surface water 

balance (Roerink et al., 2000). Recharge quantification problems from different sources are 

addressed by Gee and Hillel (1988), Lerner et al., (1990), Allison et al., (1994), Stephens 

(1994), Lerner (1997), and Simmers (1997), among others. 

The impact of lithology and geomorphology in semiarid regions is exemplified by variances 

between designated areas and its adjoining geological feature (Gieske, 1992; De Vries, 1997; 

Selaolo, 1998; De Vires et al., 2000). Sinkholes in Saudi Arabia receives about 47% of the 

average rainfall (100 mm/year) and withdraw surface runoff into its sinkholes interconnections 

(Hoetzl, 1995). 



 

The formulation of cloud water is based on the interception befalls of droplets amalgamate on 

different earth surface features including mainly the vegetation cover (Bruijnzeel et al., 2005; 

Holder, 2003, 2004; Prada et al., et al., 2009; Brauman et al., 2010). Lack of vegetation cover 

lead to insufficient cloud water formation and decrease in water precipitation into the soil in 

remarkable quantities (Davis and DeWiest, 1991). Several elements stimulus the formation of 

cloud water interception. According to Elhag and Bahrawai (2014), average cloud spatial 

distribution, droplet size, vegetation cover and wind velocity are the basically encountered. 

Presence of mountainous chain and precipitous slopes in a designated area are the origination 

of what so called the cloud belt, cloud interception in the study area is expected to be a joint 

phenomenon along the area (Elhag and Bahrawi, 2014). 

Clouds exert a dominant influence on solar energy absorbed by the Earth and on infrared 

radiation emitted to space. It is known that clouds present a problem they act to cool the planet 

by reflecting solar radiation to space and warm the planet by reducing radiation emitted to 

space (Winston, 1967; Stephens et al., 1981; Goodman and Henderson-Sellers, 1988). 

Accurate detection of clouds from remote sensing images is with a major concern for a wide 

range of remote sensing applications, especially by sensors detecting  ultraviolet (UV) and 

visible and near-infrared (VNIR) range of the electromagnetic spectrum (Feister  and Gericke, 

1988; Simpson, 1999). 

To optimize the use of limited water resources in arid environments unconventional methods 

of planning is required (Calegari, et al., 1998).  Soil moisture monitoring is crucial feature of 

managing water requirements of agricultural fields founded on advances irrigation techniques 

(Muñoz-Carpena et al., 2002). 

The aim of the current study is to examine the interconnection between spatiotemporal 

distribution of the conducted cloud likelihood maps and clouds underneath terrain features to 

improve potential rainwater harvesting in the study area. 



 

2. Materials and Methods 

2.1. Study area 

Asir region is located at the southwestern Saudi Arabia (Figure 1). Asir consists of about 

100,000 km2 of Red Sea coastal plains, high mountains, and the upper valleys of the wadis 

(seasonal watercourses) are Bīshah and Tathlīth. Asir is a prosperous agricultural region. It has 

an area of 77,088 km² and an estimated population of 1,563,000. It shares a short border with 

Yemen. Its capital is Abha. The average annual rainfall in the highlands probably ranges from 

300 to 500 mm falling in two rainy seasons, the chief one being in March and April with some 

rain in the summer. Temperatures are extreme, with diurnal temperature ranges in the highlands 

the greatest in the world. It is common for afternoon temperatures to be over 30 °C, yet 

mornings can be frosty and fog can cut visibility to near zero percent. As a result, there is much 

more natural vegetation in Asir than in any other part of Saudi Arabia. 

 

Figure 1, Administrative boundaries of KSA regions with location of the study area 

highlighted (Elhag and Bahrawi, 2014). 



 

General structure of the cloud detection algorithm is illustrated in Figure 2. During 

development of the algorithm by Fischer and Grassl (1984); Fell and Fischer (2001), using the 

radiative transfer model MOMO (Matrix Operator MethOd), simulated cloud and noncloud top 

of atmosphere radiance have been produced and an Artificial Neural Net has been trained. 

Thus, Artificial Neural Network is now used in the Cloud Probability Processor, where it is fed 

with the reflectances and the pressure as shown in the Figure 2. A post-processing is applied 

after the net (nn2prop) which scales the output of the Artificial Neural Network into a 

probability value. 

 

Figure 2, Cloud detection algorithm. 

2.2.2. Algorithm basics 

According to Lindstrot et al., (2009), clouds are easily to detect when a manual classification 

of satellite images is done, their automatic detection is difficult. Clouds have four special 

radiative properties that enable their detection: 1) clouds are white, 2) clouds are bright, 3) 

clouds are higher than the surface and 4) clouds are cold. However clouds, as the most variable 

atmospheric constituent, seldom show all four properties at the same time. 
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Thin clouds show a portion of the underlying surface spectral properties, and low clouds are 

sometimes warm. Also, some surface types like snow and ice have spectral properties that are 

similar to some of the cloud properties .Therefore simple thresholding algorithms often fail, 

and existing cloud detection schemes use several different cascaded threshold based tests to 

account for the complexity (King et al., 1992; Saunders and Kriebel 1988, Mecikalski et al., 

2013).  

2.2.3. Algorithm specification 

The cloud probability algorithm has been developed and implemented by Free University 

Berlin and Brockmann Consult. It is also used in the Global MERIS Land Albedo map project 

(Delwart et al., 2007). The cloud probability algorithm is using nine spectral bands of MERIS. 

Specifically, the ratio of band 10 (cloud optical thickness, cloud-top pressure reference), band 

11 (Cloud-top / Surface pressure) and band 12 (aerosol, vegetation) which is an oxygen 

absorption indicator, the European Centre for Medium-Range Weather Forecasts (ECMWF) 

surface pressure and the exact wavelength of band 11 as input. As an output, it yields a 

probability value (0 to1) indicating if a pixel can be regarded as a cloud or not. Such a 

probability permits a more flexible way to work with identified clouds compared to a binary 

cloud mask. The algorithm uses two different artificial neural networks. 

MERIS measures radiances in 15 channels between 400nm and 1000nm. Thus the very 

valuable thermal information and information about the liquid and ice water absorption at 

1.6µm and 3µm are not available. The cloud detection for MERIS therefore relies on bands 

10), 11) and 12) according to Lindstrot et al., (2009). In addition a slight absorption of snow at 

900nm could be used to discriminate snow from low clouds (Delwart et al., 2007). 

Watershed delineations and its companions of DEM analyses are processed under GIS 

environment using conventional methods. 



 

2.2.4. Cell statistics 

Under GIS environments (ESRI, 2008), cell statistics calculates a per-cell statistic from 

multiple rasters (59 raster), in the current case the “Mean” command which calculates the 

average of all input raster values as it illustrated in Figure 3. Resulted could average distribution 

is then converted into percentages raster based on 0 and 1 cloud probability. Classifying the 

final spatiotemporal cloud average distribution map was based on Jenks rule of classification, 

where the output classes were based on natural groupings innate in the data (ESRI, 2008). Jenks 

rule identifies break points by picking the class breaks that best group similar values and 

heighten the differences between classes. The features were divided into classes whose 

boundaries were set where there were fairly big jumps in the data values. The final output map 

were divided into three classes,  

a- Not cloudy 

b- Marginally cloudy and 

c- Cloudy. 

0 1 0 1 1   1 0 0 1 1   0.5 0.5 0 1 1 

1 1 1 0 1   0 1 1 1 0   0.5 1 1 0.5 0.5

0 1 1 0 1 + 1 0 0 1 1 / 2 = 0.5 0.5 0.5 0.5 1 

1 0 1 0 1   0 1 0 1 0   0.5 0.5 0.5 0.5 0.5

0 1 1 0 0   1 1 0 1 1   0.5 1 0.5 0.5 0.5

          Raster 1           Raster 2              Mean raster 

Figure 3. Mean command illustration 

 

2.2.5. NDWI calculation 

The Normalized Difference Water Index (NDWI) is a satellite index derived from Near-

Infrared (NIR) and Short Wave Infrared (SWIR) channels: 

NDW I= (1−SWIR/NIR) / (1+SWIR/NIR) 



 

The amount of water present in leaf internal structure mainly affects the spectral reflectance in 

the SWIR interval (ca. 1.2-1.7 μ m). The SWIR reflectance is also sensitive to leaf internal 

structure. Because the NIR is affected by leaf internal structure and leaf dry matter, but not by 

the water content, the combination of both into NDWI “removes” leaf dry matter and internal 

structure. NDWI is less susceptible to atmospheric scattering than NDVI, but does not remove 

completely the background soil reflectance effects, similar to NDVI. Because the information 

about vegetation canopies contained in the SWIR channel is very different from that contained 

in the VIS channel, NDWI should be considered as an independent vegetation index. 

3. Results and discussion 

Cloud average distribution map over the designated area was performed under the tropical 

atmosphere case of Artificial Neural Network implementation (Petty 2006; Lindstrot, et al., 

2009). Cloud probability maps configured within three levels of certainty as illustrated in 

Figure 4. Levels of certainty are: A- more than 80% of cloud probability (cloudy), B- from 80 

to 20% cloud probability (marginally cloudy) and C- less than 20% cloud probability (not 

cloudy). The algorithm implementation conducted robust results over the study area with high 

accuracy cloud maps under correct sky conditions, the algorithm maintains successfully high 

precision by 75% (Mecikalski et al., 2011) 

Certainty levels were converted into three cloud probability classes as shown in Figure 5. 

According to table 1, most of the used flags belong to suspect pixels (value of 8) and to overland 

pixels (value of 16; Figure 6) to confirm the reliability of the algorithm performance over the 

designated study area which is mainly an agricultural land and desert (Fischer, et al., 1997; 

Lindstrot, et al., 2010). In Figure 6, proper selection of threshold value according to Table 1 

resolved into significant differences between cloud free water and cloudy water pixels. 

Therefore, the clear pixels could be separated from cloudy pixels. However, this is also 



 

indicates the discrimination between land and sea by using the image of brightness temperature 

is successful (Feister et al., 2010; Guan, et al., 2010). 

Resulted could maps of the 59 MERIS images are then classified into two classes only to 

perform the average command: 1- certain cloudy pixel (< 80% accuracy) and, 2- not cloudy 

pixels (> 80% accuracy), values of one and zero are assigned to the cloud class’s respectively 

as demonstrated in Figure 7.  

Table 1. Cloud probability maps corroborated flags of MERIS imagery   

Name Value Description 

Cosmetic 1 Pixel is cosmetic 
Duplicated 2 Pixel has been duplicated (filled in) 
Glint_Risk 4 Pixel has glint risk 
Suspect 8 Pixel is suspect 
LAND and/or OCEAN 16 Pixel is overland, not ocean 
Bright 32 Pixel is bright 
Coastline 64 Pixel is part of a coastline 
Invalid 128 Pixel is invalid 

 

 

Figure 4. Cloud certainty map over the southern part of KSA 



 

 

Figure 5. Cloud Temperature map over the southern part of KSA 

 

 

Figure 6. Cloud probability classification flags used over the Southern part of KSA 

 



 

 

Figure 7. Cloud probability map of 59 MERIS data set of Asir region in KSA from January 

2006 to October 2011 

The current algorithm proved to be efficient in cloud detection over agricultural land and desert 

(Fischer and Bennartz, 1997; Fischer, et al., 1997;  Key et al., 2004; Lindstrot, et al., 

2010).Could average distribution map over Asir region, southern KSA illustrated in Figure 8 

confirms that the majority of the study area is described generally to be cloud free area most of 

the year. Formulation of trapped clouds due to the mountain belt located in the study area 

maintains cloudy cover area most of the year. Watershed delineation resulted into several 

watershed exists in the study area, only the biggest one is represented in Figure 8. The western 

side of the watershed shares cloudy coverage most of the year with the mountain belt. This 

cloudy cover might be considered as source of the watershed torrents (Ramos et al., 2011). 

Cloud spatio-temporal distribution map pointed out that the majority of the watershed lies 

under either marginally cloudy or not cloudy areas. However, the sink of the watershed is 

covered mostly by clouds.  



 

Selected watershed located within Precambrian geological feature which is not adequate for 

groundwater recharge purposes due to the permeability of Precambrian layer, the watershed is 

deliberated as low permeable layer (De Vries, 1997; Selaolo, 1998; De Vires et al., 2000). In 

contrary, only a small lower part of the watershed lies over a Quaternary alluvial geological 

layer which is characterized by higher permeability (De Vries, 1997; Selaolo, 1998; De Vires 

et al., 2000), the sink of the watershed receives the runoff and settled it down leaving a better 

chance for groundwater recharge process (Figure 9).  

Valuable information could be extracted from remote sensing data only when the limitation 

conditions are taken into account. Limiting conditions for the application of Normalized 

Difference Water Index may rely mainly on surface roughness (Su 2002), and the type of land 

use (Li et al. 2009). Normalized Difference Water Index exemplified in Figure 10, indicates 

that the most of eastern mountain belt of the study area including the designated watershed are 

located over a relatively dry soil. Dry soils have a higher tendency to accommodate preferably 

surface water which may leads to improve groundwater recharge (Tyler et al., 1996; Cobet, 

2000; De Vries et al., 2000; Brunner et al., 2007). Differences in spatial soil moisture content 

maps can be used for the identification of distinctive areas of potential for groundwater 

recharge (Roerink et al., 2000).  

The finding of the current research is based on the interconnections between the previously 

conducted results as it composed in in Figure 11, cloud average distribution map intersected 

with the geological map of the designated area. Furthermore the stream network within the 

main watershed of the area draws the attention to the watershed sink. The sink is characterized 

by cloudy sky most of the year, relatively semi dry soil and adequate geological permeable 

layer. The interconnections of those conditions improves groundwater recharge process 

through less evaporation effect, slower saturation velocity and higher potential permeability, 

respectively (Beverly et al., 1999; Zhang et al., 1999; Gehrels, 2000). 



 

 

Figure 8. Cloud average distribution map over the southern part of KSA 

 

Figure 9. Stream network confined in the main watershed placed over the geology map of the 

southern part of KSA 



 

 

Figure 10. Remote sensing based soil moisture content map the southern part of KSA 

 

Figure 11. Cloudy areas within the watershed placed over the geology map the southern part 

of KSA to locate areas suitable for potential groundwater recharge  



 

4. Conclusions and recommendations 

Rainwater harvesting and conservation, is the activity of direct collection of rainwater. The 

conservation of rainwater so collected can be stored for direct use or can be recharged into 

groundwater. 

The aim of the present work is to apply the cloud probability algorithm developed by the 

Institute for Space Science, Free University Berlin. Performing the algorithm resulted in a 

robust cloud probability maps over the designated area. Classifying the resulted maps into two 

classes cloudy and not cloudy eases the sum of all the cloudy pixels of the 59 probability maps 

conducted. The spatiotemporal distribution of the clouds raises the quest for the proper use of 

such a method. The correlation between the cloudy pixels and land use land cover beneath is 

the keystone of proper practice of the current approach. As the clouds are the main source of 

precipitation so using the cloud probability maps will be strongly correlated to water resources 

management in the area. The practices of water resources management are many but the present 

methodology helps decision makers to decide where the dams need to be built to increase the 

potentials of groundwater recharge as a direct implementation of the adopted method. 

However, several applications of integrated water resources management or risk assessments 

may benefits from the current method, i.e.: estimation of soil moisture content, improvement 

of rainfed agriculture and/or to produce risk maps to avoid the drastic results of flooding events 

that may occur. Further work on the correlation between the cloud probability maps and land 

use land cover beneath may need to be carried out. 
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