Analysis of 3 Decades Temperature Data for Athens and Thessaloniki, Greece
Impact of Temperature Changes on Energy Consumption for Heating and Cooling of Buildings

K. Papakostas, P. Zagana-Papavasileiou, T. Mavromatis

International Conference ADAPTtoCLIMATE
Nicosia, 27-28 March 2014
The topic of climate change has attracted widespread attention in recent years. The reasons for climate change are complex and there are various opinions about the causes in the scientific community. The main cause, commonly accepted nowadays, is the emissions from buildings, business, agriculture and transport. In all these activities non-renewable energy sources (liquid, gas and solid fuels) are used and greenhouse gases are produced.
Recently, numerous studies have been conducted around the world into the impacts of global warming on
- the changes of ambient air temperature
- the energy consumption in built environment
- electric energy demand
- related GHG emissions
These studies analyze historical data or estimate the climate over the next years, by using computational models of the world climate system.
Introduction (3/4)

According to IPCC (Intergovernmental Panel on Climate Change) Climate change report 2007:

- warming in the last 100 years has caused about a 0.74°C increase in global average temperature.

- eleven of the twelve years in the period 1995–2006 rank among the top 12 warmest years in the instrumental record (since 1880).

- Further warming will continue if emissions of greenhouse gases continue.
The purpose of this work is:

- to present the results of a 30-year (1983-2012) statistical analysis of ambient air temperature data for the two major Greek cities, Athens and Thessaloniki

- to present a reference document on the recent–past and present air temperature variations for use in energy application-oriented studies

- to present the impact of temperature data changes on the energy consumption of buildings
Temperature data

Hourly dry bulb temperature data were made available from the meteorological stations

- of the National Observatory of Athens (NOA)
- of the Institute of Meteorology and Climatology of the Aristotle University of Thessaloniki (IMC/AUTh)

Both stations lie near the town center but they are isolated from heavy traffic and densely built areas.
The 10 Years average annual temperature:
In Athens **increased 1°C** from the first to the second decade and **0.2°C** from the second decade to the third.
In Thessaloniki the **increase was 0.5°C** from the first to the second decade and **0.6°C** from the second to the third decade.
There is an **upward trend** of the **annual and 5 Years average temperature** for both cities. There is a **constant increase** in **monthly average temperatures** for both cities.
During **summer** the increase ranges: from **0.63 K** in September to **2.43 K** in August.

During **winter** the increase ranges: from **0.18K** in February to **1.51K** in December.
During **summer** the increase ranges:
from **0.42 K** in September to **1.74 K** in August

During **winter** the increase ranges:
from **0.16 K** in April to **1.70 K** in December
Temperature Bin Data - Athens

The frequency of occurrence of the low temperature bins (<6/8°C) reduced from 1021 to 748 h
Temperature Bin Data - Athens

The frequency of occurrence of the peak temperature bins (>32/34°C) increased from 477 to 779 h
3. Temperature Bin Data - Thessaloniki

Thessaloniki Heating Period

The frequency of occurrence of the low temperature bins (<6/8°C) reduced from 1836 to 1537 h.
Thessaloniki Cooling Period

The frequency of occurrence of the peak temperature bins (>32/34°C) increased from 141 to 266 h
Temperature Bin Data

- In both cities, the distribution shifts to the right.
- In every new decade, the frequency (h) of the low temperature bins is steadily decreased, and the frequency of the high temperature bins is increased.
- The most frequent temperature bin, in the cooling period was 24/26°C which increased to 26/28°C.
- The most frequent temperature bin in the heating period was 10/12°C and increased to 12/14°C.
Energy Demands for Heating and Cooling

In order to quantify the effect of temperature data changes on the energy consumption of buildings, the energy demands of an office building were estimated for heating and cooling.

Energy requirements account for sensible loads only, since the data analysis presented in this paper refers only to dry-bulb temperature data.
The building chosen for this study is a typical building of the university campus in Thessaloniki:

- rectangular shape
- dimensions 16x45m
- 9 floors with offices
- a ground floor (main entrance, offices, computer room)
- a basement which houses the utilities

The two main elevations of the building are oriented to the north and to the south.
Energy Demands for Heating and Cooling

Plan view of the building’s typical floor and ground floor

International Conference ADAPTtoCLIMATE, 27-28 March 2014, Nicosia, Cyprus
Energy Demands for Heating

17.6% reduction

2.8% reduction

Total heating demands reduction = **19.9%**

(from 1st to 3rd decade)
Energy Demands for Heating

6.2% reduction

7.4% reduction

Total heating demands reduction = 13.2%
(from 1st to 3rd decade)
Energy Demands for Cooling

9.6% increase

0.9% increase

Total cooling demands increase = 10.6%
(from 1st to 3rd decade)
Energy Demands for Cooling

2.8% increase

7.4% increase

Total cooling demands increase = 10.4%
(from 1st to 3rd decade)
Conclusions (1/3)

- The indication of climate change towards milder winters and hotter summers in the two cities is confirmed.

- The ambient temperature has a significant increasing linear trend during the last 30 years.

- The 10-year annual average temperature, from the first to the third decade, increased 1.2°C for Athens and 1.1°C for Thessaloniki.

- The average monthly and 5-year temperature values display the same increasing trend as well.
Conclusions (2/3)

- In every decade the frequency of occurrence (in h)
 - of the low temperature bins is steadily decreased
 - of the high temperature bins is increased

- The consequence of climate change has strong effects on buildings’ energy requirements

- Energy calculations for a typical office building showed a continuous, from decade to decade, decrease of the energy requirements for heating and a permanent increase of the energy requirements for cooling
Conclusions (3/3)

- Changes in the ambient air-temperature will have significant consequences upon:
 - the demand for electricity
 - the potential of using outdoor air for “free cooling”
 - the performance of HVAC equipment (chillers and heat pumps)

- The changing climate will need to be reflected in future building design (i.e. temperature data input for dimensioning HVAC systems and for energy behavior calculations must be periodically re-examined and reviewed)
Thank You for your Attention