

Pine sawflies and drought – from tested hypothesis to large scale vulnerability maps

Mikko Peltoniemi, Seija Sirkiä, Seppo Nevalainen and Seppo Neuvonen

LIFE09 ENV/FI/000571 Climate change induced drought effects on forest growth and vulnerability (Climforisk)

Overall aims of the project

Climforisk Life+ project (2011-2014 www.metla.fi/life/climforisk)

- Estimates forest carbon balance and its scenarios over Finland (Tuomo Kalliokoski's presentation)
- Evaluates vulnerability of forests to biotic damages
- Where do we get with the methods and data that exists, and how to improve?

Pine sawfly

- Larvae eat pine needles
 - Growth losses
 - Increased mortality
 - Increased susceptibility to further damages
- European pine sawfly (Neopridion sertificer)
- Common pine sawfly (*Diprionidae pine*)
 - Rarer but more damaging

Fig: Ari Nikula, Metla

Pine sawfly

Larvae eat pine needles

Drought benefits us

Winter frost below -35 C kills the eggs

(Diprionidae pine)

- Rarer but more damaging

European pine sawfly larvae Fig: Ari Nikula, Metla

This study

Can we predict vulnerability of forests to Pine sawfly outbreaks – with European level ICP I data ?

Hypothesis: outbreaks are preceded by years of low soil moisture

Motivation: successful model predictions can be incorporated to national forest planning system

Data

ICP level I plots

- Altogether 708 plot measured, with 15718 unique trees
- Data measured 1985-2008
- Main damage types identified
- Pine sawflies (Diprionidae. i.e.D. pini, N. sertifer) are grouped

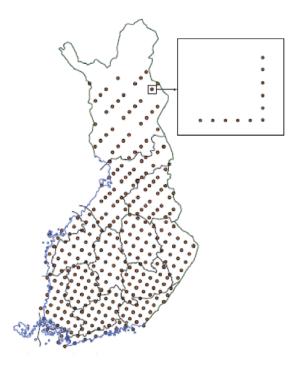
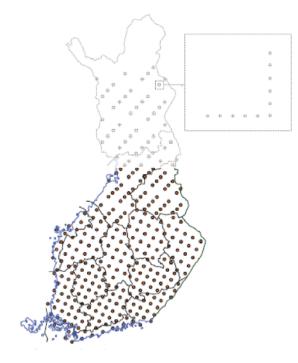
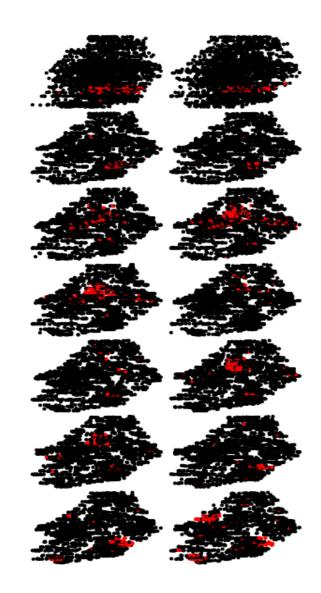
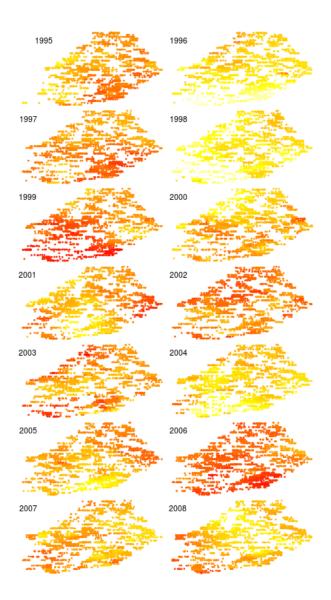


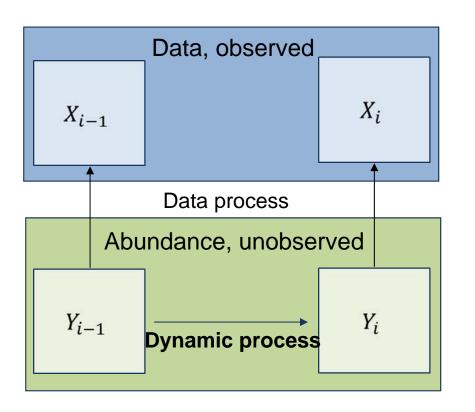
Figure 1. Locations of ICP I level forest monitoring plots.

Sawfly incidents

1995-2008 Southern Finland


Figure 1. Locations of ICP I level forest monitoring plots.

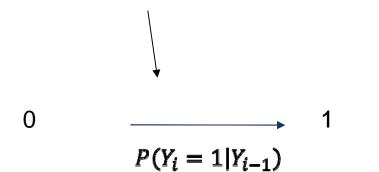


Methods

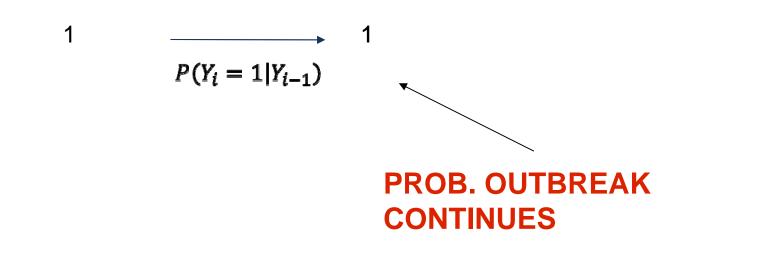
- Modelled drought (SWI)
 - Semi-empirical GPP and water balance model PRELES
- Calibrated for Finnish conditions (Hyytiälä), and tested (Sodankylä)
 - further model calibration and testing ongoing at 8 eddy sites, good results

Methods – Pest dynamics model

- In a perfect better world, we would set up a hierarchical Bayes model as shown
- Abundance at one time point is a function of the previous value, observations are functions of the abundance
- But we do not understand the dynamic process well enough, and the data is too coarse


$$0 \qquad \longrightarrow \qquad 1$$
$$P(Y_i = 1 | Y_{i-1})$$

- We simplify the dynamic process in to a two-stage random walk:
 - Outbreak (1)
 - or no outbreak (0)


$$1 \qquad \qquad 1 \qquad \qquad 1 \qquad \qquad 1 \qquad \qquad P(Y_i = 1 | Y_{i-1})$$

PROB. NEW OUTBREAK

- We simplify the dynamic process in to a two-stage random walk:
 - Outbreak (1)
 - or no outbreak (0)

RESULTS

$$0 \qquad \longrightarrow \qquad 1$$
$$P(Y_i = 1 | Y_{i-1})$$

 Outbreak starts with a low probability 1.5-2.2% in a healthy forest

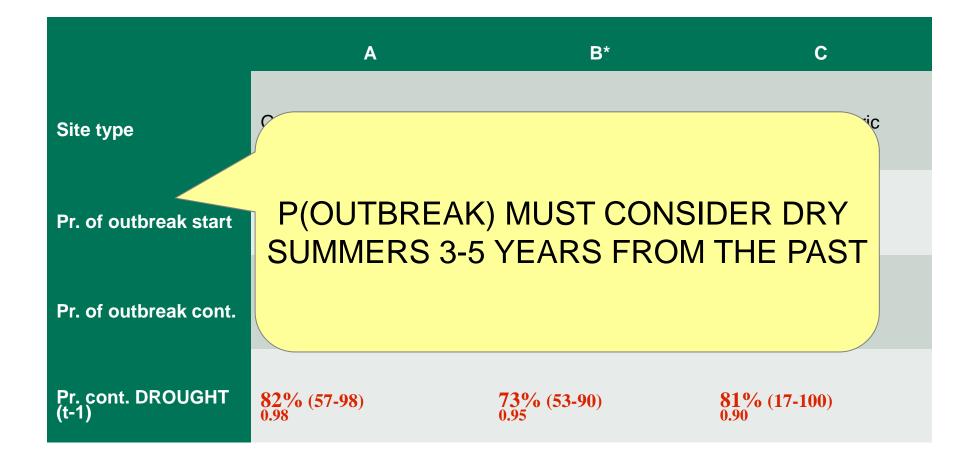
 Outbreak continues with high probability 51-62% in sick forest

During outbreaks, a tree is damaged with p=46-49% probability

Outside outbreaks, p=0.5%

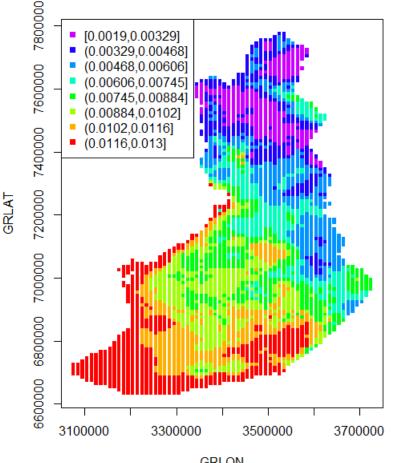
Damage probability increases with dryness of the site

	Α	B*	С
Site type	Groves and herb-rich heath forests (78 plots)	Mesic heath forests (214)	Sub-xeric and xeric heath forests (176)
Pr. of outbreak start	0.5% (0.1-1.3) _{0.98}	1.4% (1.0-1.9)	2.5% (1.9-3.2) 1.00
Pr. of outbreak cont.	46% (22-72) 0.81	59% (47-72)	58% (49-67) 0.58



Drought increases the probability of outbreak continuing

	A	B*	С
Site type	Groves and herb-rich heath forests (78 plots)	Mesic heath forests (214)	Sub-xeric and xeric heath forests (176)
Pr. of outbreak start	0.5% (0.1-1.3) 0.98	1.4% (1.0-1.9)	2.5% (1.9-3.2) 1.00
Pr. of outbreak cont.	46% (22-72) 0.81	59% (47-72)	58% (49-67) 0.58
Pr. cont. DROUGHT (t-1)	82% (57-98) 0.98	73% (53-90) 0.95	81% (17-100) 0.90


Outbreak start affected also by previous years' drought

Vulnerability map

- Probability of winter T_{min} < -35 C explains geographical patterns
- ...combined with site type we get the map -->
- Not enough data to include interannual variation of drought into the combined model

Vulnerability map for site type B

Conclusions

ICP I data supported hypotheses of climate association of Pine sawfly damages

(it is better than e.g. forest inventory data - not shown here)

The simplified Bayes-model and ICP I data provide good tools for vulnerability prediction

Our results provides basis for current day vulnerability maps of Pine sawfly, but one should be more critical when making scenario maps

Forest KNOWLEDGE Well-being Know-how

LIFE09 ENV/FI/000571 Climate change induced drought effects on forest growth and vulnerability (Climforisk)