

Impacts, adaptation and mitigation roles of typical Mediterranean crops Marco Bindi and Marco Moriondo

Department of Plant, Soil and Environmental Science - University of Florence Piazzale delle Cascine 18 - 50144 Firenze, Italy. Email: marco.bindi@unifi.it Ibimet-CNR Via Caproni 8 - 50145 Firenze, Italy. Email: marco.moriondo@cnr.it

> ADAPTtoCLIMATE Cyprus March 2014

Challenges of agriculture in 21st

century

- to feed the increasing number of people on earth
- to face with growing scarcity of land and water due to competition with other sectors
- to address increasing demands for bioenergy and biofuels
- to address the increasing dietary intake in developing countries

Challenges for European agriculture

Increasing production of food and biomass

- Increasing food and feed production in Europe for feeding the worlds middle class
- Increasing biomass for bioenergy, biofuels and biomaterials

Maintaining the agricultural resource base (soils and genotypes)

- Soil quality (organic matter and drainage)
- Soil erosion
- Genotypes of existing and new crop types for use in Europe

Reducing environmental impacts

- Nitrogen and phosphorus losses to the aquatic environment
- Atmospheric nitrogen emissions
- Greenhouse gas emissions
- Pesticide use and losses

Maintaining biodiversity

- The agricultural landscape contributes to much of the biodiversity
- Need for new and more corridors in the landscape (also for adaptation to climate change)

Challenges of agriculture in 21st

century

- to manage changes in mean and extreme climate:
 - Increasing atmospheric CO2 concentration
 - Increasing temperatures
 - Changes in rainfall
 - Changes in extreme events
 - Heat waves
 - Droughts
 - Floods
 - Hail
 - Storms

Ahmed et al., 2009

Impacts of climate change to agricultural crops:

- Suitable areas for cultivation
- Length of growth season and time of phenological stages
- Crop yields (quantity and quality)

Impacts of climate change to

agricultural crops: Suitable areas for

cultivation • Expansion of northern limits

• Contraction of southern limits

Moriondo et al., 2013

Impacts of climate change to agricultural crops: Suitable areas for cultivation

- Expansion of northern limits
- Contraction of southern limits

agricultural crops: Length of growth season and time of phenological stages

Impacts of climate change to

• Reduction of the growth seasons and advance in maturity stage

< -60 -56 -52 -48 -44 -40 -36 -32 -28 -24 -20 -16 -12 -8 -4 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 >60

Scenario A1B - Ferrise et al., 2010

agricultural crops: Crop yields

Impacts of climate change to

 Prevalent reduction of crop yields in southern areas (mainly in summer crops)

Impacts of climate change to agricultural components: summary from IPCC- AR4

Sectors and				Area		
Systems	Impact	North	Atlantic	Central	Mediterr.	East
Agriculture and fisheries	Suitable cropping area	<u>↑</u> ↑↑	<u>↑</u> ↑	↑	$\downarrow\downarrow$	↓
	Agricultural land area	$\uparrow\downarrow$	$\downarrow\downarrow$	$\downarrow\downarrow$	$\downarrow\downarrow$	$\downarrow\downarrow$
	Summer crops (maize, sunflower)	<u>↑</u> ↑↑	↑ ↑	↑	$\downarrow\downarrow\downarrow\downarrow$	$\downarrow\downarrow$
	Winter crops (winter wheat)	<u>^</u> ^	ŤŤ	1 to ↓	$\downarrow\downarrow$	Ŷ
	Irrigation needs	na	↑ to 🦊	$\downarrow\downarrow$	$\downarrow\downarrow\downarrow\downarrow$	Ų
	Energy crops	<u>^</u> ^	ŤŤ	Ŷ	$\downarrow\downarrow$	Ļ
	Livestock	↑ to 🦊	Ų	$\downarrow\downarrow$	$\downarrow\downarrow$	$\downarrow\downarrow$
	Marine fisheries	↑ ↑	Ŷ	na	V	na

Impacts of climate change to

agricultural components: Perceived by

agronomists (for 2050)

Winter wheat

	Growth Duration	Overwin- tering	Frost	Suitable harv.	Seasonal variability	Drought	Heat stress	Hail	Pest& Diseases	Weeds	Soil erosion	Nitrogen losses
ALN												
BOR	1.5	-1.0	0.0	-0.3	0.0	0.5	0.5	0.0	2.0	1.0	1.0	2.0
NEM	0.3	-0.8	-0.3	1.5	1.3	1.0	1.0	0.5	1.5	0.0	0.3	0.8
ATN	0.2	-0.8	0.0	-0.3	0.3	0.8	1.0	0.5	1.5	1.0	0.8	1.3
ALS	-0.5	1.0	-0.5	1.5	0.0	1.0	1.0	0.0	1.0	0.0	2.0	1.0
CON	-0.2	-0.4	0.0	0.4	0.5	0.4	0.9	0.2	1.4	1.0	0.6	1.3
ATC	-1.0	-0.7	-0.5	-0.3	0.8	0.3	0.3	0.5	0.3	0.5	0.5	0.5
PAN	-0.7	-0.3	0.0	-0.5	1.7	0.7	2.0	1.0	1.3	1.0	0.3	0.8
LUS	-1.0		0.0	1.0	1.0	1.0	1.0	0.0	0.0	1.0	1.0	0.0
MDM	-1.0	-1.0	0.0	-1.0	0.0	-1.0	-1.0	-1.0	0.0	1.0	0.0	1.0
MDN	-1.3	-0.5	-0.3	-0.5	0.3	0.8	0.5	0.1	0.5	1.0	0.8	0.8
MDS	-0.8	0.0	-0.3	0.3	0.5	0.8	0.8	0.3	0.0	1.0	0.5	0.5

Ne

Negative values imply decreases Positive values imply increases from COST 734

Response of agriculture to climate

change: mitigation and adaptation strategies

Source: Jackson and Tomich

Efficiency of mitigation and adaptation strategies

- Mitigation strategies of climate change (action on the causes: reduction CH₄ and N_xO emissions, and increase CO₂ storage)
- Adaptation strategies to climate change (alleviate the effects: improve crop management and increase water retention)

Agriculture adaptation to climate

change: changes, requirements, achievements **Changes:**

- Increasing temperatures
- Increasing rainfall intensity
- More frequent droughts
- More variable climate (in many areas)

Requirements:

- Higher resilience to climatic variability
- Better use and management of water

Achievements:

- Maintaining fertile soils with high water holding capacity
- Improving crop genotypes (drought tolerance)
- Diversifying crop rotations and cropping systems
- Cover crops and intercrops to improve fertility/retain nutrients
- Adapting crop management to increase resilience to change

Adaptation strategies: earlier sowing data

Adaptation strategies: cultivar with longer circle

Agriculture mitigation to climate

change: reductions, requirements, achievements **Reductions:**

- Methane from livestock, manure management and paddy rice
- Nitrous oxides from manure and nitrogen fertiliser use
- Carbon dioxide from cultivation of new land and peatlands
- Carbon dioxide from fossil fuel use

Requirements:

- Increasing efficiencies in the food production chain
- Implementation of new technologies and management
- Prudent production of biofuels (perennial crops, wastes)
- Abandoning certain practices (e.g. cultivation of peatlands)
- Combination of many measures to achieve sufficient effect

Achievements:

- Directing research, advice and innovation towards these issues
- Focusing existing and new incentive schemes on GHG emissions (financial support, taxation, codes of practice)

Agriculture mitigation to climate

change: contribution of agro-ecosytems

Forestry system (Matteucci, 2008)

Orchard system (Brilli et al., 2013)

Agriculture mitigation to climate

change: contribution of agro-ecosytems

Orchard system (Brilli et al., 2013)

Cash crop (Lugato et al, 2010).

Mitigation strategies: tillage

Zero Tillage

- Zero tillage has high mitigation potential for carbon (19.9 Mton CO₂-eq year⁻¹) and slightly negative mitigation potential for N2O (-0.50 Mton CO₂-eq year⁻¹)
- For the EU₂₇ the current implementation is 2.6% and potential implementation is 16% of all agricultural land (max. France, Germany)

Minimum tillage

- The mitigation potential for carbon is 9.6 Mton CO₂-eq year⁻¹ and for N₂O there is no effect
- For the EU₂₇ the current implementation is 13% and potential implementation is 42% of all agricultural land (e.g. min UK, max. Belgium, Baltic Rep.)

Mitigation strategies: fertilisers

Optimizing fertilizer application

- No effect on carbon and for N2O the mitigation potential is 4.2 Mton CO2-eq year-1
- Good potential implementation (from 54% to 67% of all agricultural land)(e.g. max. France, min. UK, Netherlands and Scandinavian countries where they has been already implemented

Fertilizer type

- No effect on carbon and for N2O the mitigation potential is 2.3 Mton CO2-eq year-1
- Rather good potential implementation (from 29% to 50% of all agricultural land) in the countries with high knowledge of farmers and money to invest (e.g. France, Germany and UK)

Adaptation and mitigation

options: Interactions

- Mitigation generally concerns enhanced carbon storage and more efficient nitrogen use
- Many adaptation options deal with improved water and nitrogen use, enhanced diversity and resilience to variability
- Improved carbon management will lead to better preservation of soils that assist adaptation (resilience)
- Improved residue management and cover crops will preserve soils against erosion and nutrient losses
- More diverse cropping systems often enhances carbon storage and adds diversity that improves resilience
- There are also antagonistic effects, e.g. cover crops increases the use of water

Mitigation and adaptation: inter

linkages

- Most categories of mitigation options have positive impacts on adaptation:
 - Catch crops → soil erosion and nutrient losses
 - Reduced tillage → soil erosion and soil water conservation
 - Rotation species → soil erosion, nutrient losses, genetic diversity
 - Agroforestry → soil erosion, nutrient losses and microclimate modification
- Quantitative inter-linkages are not very well explored

	Adaptation measure	Soil erosion control	Nutrient loss reduction	Soil water conservation	Genetic	Microclimate modification	Land use change
Mitigation measure							
Catch crops etc		+	+	-			
Reduced tillage		+		+			
Residue management		+		+		_	
Extensification							+
Fertiliser application			+				
Fertiliser type			+				
Rotation species		+	+		+		
Adding legumes		+	+		+		
Permanent crops		+	+	-	+		
Agroforestry		+	+			+	
Grass in orchards, vineyards		+	+	<u>.</u>		-	
Optimising grazing intensity				+			
Length and timing of grazing		+					
Grassland renovation					+		
Application to crops vs grassl				+			
Peatland management							+

Future agricultural production

systems based on: promotion of adaptation and mitigation and supplying of biomass

- More permanent crop cover and less intensive soil tillage
- Perennial crops to sequester carbon and reduce N2O emissions
- Technologies in livestock production to reduce emissions:
 - Improved feeding practices better tailored feed crops
 - Manure management technologies low emissions and high use efficiency
- Combine bioenergy, feed (food) and biomaterial production:
 - Highly productive vegetative (perennial) crops
 - Biomass is treated in biorefineries to produce energy, feed and materials
 - Highly efficient nutrient use during production and processing
- Diversity to improve resilience and increase carbon capture
- Cropping systems with improved water use efficiency
- Renewed focus on agricultural research, innovation, education, advice and demonstration