Nanostructured Semiconductor Composites: Design, Preparation and Application for Solar-to-Chemical Energy Conversion and Storage

Peng Diao, Chao Li, Qingyong Wu, Dianyi Hu, Di Xu, Zhidong Liu, Jingjing Yang, Ning Xue, Tengyi Liu

School of Materials Science and Engineering, Beihang University, Xueyuan Road, No.37, Beijing 100191,

Presenting author email: pdiao@buaa.edu.cn

The direct conversion of solar energy to chemical fuels provides an attractive long-term solution to the problem of ever-rising global energy demand. Solar powered water-splitting is an artificial photosynthesis that involves two half-cell reactions, the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), and the solar energy is stored in the chemical bonds of the two products H_2 and O_2 . Herein, we report the fabrication and application of composite photoanodes and photocathodes for efficient OER and HER, respectively.

The first composite photoanode we report here was prepared by modifying WO₃ nanoneedles (NNs) with nickel-borate (Ni-B_i). The high-aspect-ratio WO₃ NNs were employed as light-absorbing material and the Ni-B_i as oxygen evolving catalyst. We demonstrate that the WO₃ nanoneedles exhibit a high activity toward OER under illumination due to their unique nanostructure. The combination of Ni-B_i catalyst with WO₃ nanoneedles significantly enhances the photoactivity for OER by further negatively shifting the onset potential of the photocurrent and improving the photocurrent within the entire oxygen-evolving potential region. Moreover, the WO₃ NNs/Ni-B_i composite photoanodes exhibit superior stability to the WO₃ NNs photoanodes at all oxygen-evolving potentials.

The second composite photoanode we report is WO₃ NNs/Fe₂O₃, which were successfully prepared on FTO substrates, with WO₃ NNs as framework cores and small nanocrystals of α -Fe₂O₃ as porous shells. The α -Fe₂O₃ was used as co-ligher-harvesting materials because its absorption band covers the majority of the UV and visible portion of the solar spectrum. We demonstrate that modification of the WO₃ NNs with α -Fe₂O₃ greatly extends the light absorption band by red-shifting the onset absorption wavelength from 450 nm to 650 nm. The photocurrent of the composite photoanodes is 1.6 time higher than that obtained on pure WO₃ NNs photoanode. Cobalt phosphate (Co-Pi) was used as OER catalyst to modify the WO₃ NNs/Fe₂O₃ composite. The deposition of Co-Pi on the surface of WO₃ NNs/Fe₂O₃ composite significantly improve the photostability of the photoanodes by facilitating hole transfer from semiconductor oxides to water.

The last photoelectrode we report here is the CuO/Pd composite photocathode for HER. In this part of work, CuO films were prepared by a facile and cost-effective method that involves solution synthesis, spin-coating, and thermal treatment process. The resulting CuO films have a monoclinic crystal structure with bandgap energy of 1.56 eV and a conduction band position of 3.73 eV below the vacuum level in borate buffer solution. A photo-assisted electrodeposition method that ensures the deposition of Pd on the photoactive sites of CuO surface was developed to prepare CuO/Pd composite photocathodes. We demonstrate that the deposition of Pd on CuO not only enhances the photocurrent for HER but also significantly improves the photocatalytic stability of the CuO film.

Acknowledgements

We gratefully acknowledge the financial support of this work by National Natural Science Foundation of China (NSFC 51672017 and 21173016), Beijing Natural Science Foundation (2142020 and 2151001)

References

T. Jin, P. Diao, Q. Wu, D. Xu, D. Hu, Y. Xie and M. Zhang, Appl. Catal. B: Environ., 2014, 148–149, 304-310.

Q. Wu, P. Diao, J. Sun, D. Xu, T. Jin and M. Xiang, J. Mater. Chem. A, 2015, 3, 18991-18999.

D. Xu, P. Diao, T. Jin, Q. Wu, X. Liu, X. Guo, H. Gong, F. Li, M. Xiang and Y. Ronghai, ACS Appl. Mater. Interfaces, 2015, 7, 16738-16749.

D. Hu, P. Diao, D. Xu and Q. Wu, Nano Research, 2016, 9, 1735-1751.

D. Hu, P. Diao, D. Xu, M. Xia, Y. Gu, Q. Wu, C. Li and S. Yang, Nanoscale, 2016, 8, 5892-5901.

T. Jin, D. Xu, P. Diao, W.-p. He, H.-w. Wang and S.-z. Liao, *CrystEngComm*, 2016, 18, 6798-6808.

Y. Yang, D. Xu, Q. Wu and P. Diao, Scientific Reports, 2016, 6, 35158.

Q. Wu, D. Xu, N. Xue, T. Liu, M. Xiang and P. Diao, Phys. Chem. Chem. Phys., 2017, 19, 145-154.

T. Jin, P. Diao, D. Xu and Q. Wu, Electrochim. Acta, 2013, 114, 271-277.

X. Guo, P. Diao, D. Xu, S. Huang, Y. Yang, T. Jin, Q. Wu, M. Xiang and M. Zhang, *Int. J. Hydrogen Energy*, 2014, 39, 7686-7696.

China