"An Urban Biowaste Biorefinery: the H2020 RES URBIS project“

Mauro Majone
Sapienza University of Rome
CIRC-05-2016: Unlocking the potential of urban organic waste
Research and Innovation Actions (RIA)

REsources from **UR**ban **B**io-**wa**ste
RES URBIS

(the acronym is in latin: things, goods, or affairs of the city)

Grant Agreement 730349
3-year project, started January 1°, 2017
21 partners from 8 countries.
Estimated total cost: 3,377,915.00 €
EU Grant: up to 2,996,688.75 €
Is it worth to recover carbon from **urban organic waste**?

Municipal wastewater contains a lot of organic matter (**COD**)! Around **100-120 gCOD/(inhabitant per day)**, mostly biodegradable. Unfortunately, it is **strongly diluted** in around 250-350 L. Nevertheless, a major portion is concentrated in **primary and excess sludge**.

The organic fraction of municipal solid waste (OF-MSW)

A comparable amount of COD (around 30-40% more) originates from the same urban area, mostly through source-sorted collection of the organic matter (OF-MSW). Additional COD (although less easily biodegradable) is present in urban park/garden waste.

Agro- and food-industry wastewater and waste

Concentrated biodegradable COD is also present in industrial wastewater/waste from agro-industries and food-processing industries, often in proximity to urban areas.

• Although all these streams have «similar» COD composition and originates from same area, they are separately handled (with a few exceptions!):
 ✓ different collection systems, different technologies, separate regulations
• COD is seldom recovered, but for
 ✓ carbon stabilization as compost or sludge
 ✓ energy recovery through bioconversion into biogas (either sludge or OF-MSW)
• However, several limitations exist, such as
 ✓ stringent regulation for use as soil improvers, poor quality (depending on collection or treatment for OF-MSW or sludge, respectively), low (or no) economic value
CIRC-05-2016: Unlocking the potential of urban organic waste

Challenges from the Call which RES URBIS aims at answering to

Can different organic waste streams of urban origin combined into a common valorization chain?

Can bio-based products be obtained from organic waste of urban origin with a higher economic value than compost and/or biogas?

Can both targets be fullfilled togheter?

Can both targets be fulfilled by integrating emerging technologies with existing systems for waste/wastewater management, into a new technology chains?
RES URBIS Rationale: developing an urban bio-waste biorefinery

To integrate treatment of most relevant bio-waste of urban origin
RES URBIS aims to combine treatment of most relevant bio-waste of urban origin, e.g. source-sorted of urban solid waste (OFMSW) and the sludge from urban wastewater treatment plants (WWS), also including park/garden waste, and possibly residues from food-processing industry of suitable composition.

To develop an urban bio-waste biorefinery and related bio-based products
Integrated treatment of different bio-waste is functional to implement a novel “urban biowaste biorefinery” aimed to converting urban bio-waste into useful bio-based products, especially towards higher value products than biogas and compost (while not disregarding them at the end of the chain). By using an integrated approach, the minimal operating capacity of the urban bio-waste biorefinery is expected to be achievable even in smaller waste collection areas.

To take care of the whole technology chain and as function of territorial conditions
By converting urban biowaste into bio-products, several industrial sectors have to be linked each other, each one having its own business targets, needs and specifications. Because driving forces and constraints highly depend on territorial conditions, affordable economic strategies have to be tailored with respect to autonomous clusters, e.g. where “waste basin” is large enough and recovery cycles are possibly closed within the cluster itself.

To take care of all other technical and non technical constraints
Regulatory (e.g. “end of waste”), environmental, and social constraints have to be also addressed, by also taking into account local, regional and national conditions
Bioeconomy, circular economy and the business network

Where is the triggering point in the loop?
Which main driver(s)?
Which main constraint(s)?
Either - environmental
 - regulatory
 - social
 - economical
 - technical
Are there any red-flags?
URBAN BIO-WASTE

In RES URBIS approach, urban biowaste includes:

• the organic fraction from separate collection of municipal solid waste (55 g TS/d from OFMSW)
• excess sludge from treatment of urban wastewater (39 g TS /d from WWS), with possible further integration with wastewater treatment
• garden and parks waste
• waste from food-processing facilities (to be selected, based on similar composition)

This is coherent with proposal 2015/0275 (COD) for a Directive of the European Parliament and of The Council amending Directive 2008/98/EC on waste:
“4. "bio-waste" means biodegradable garden and park waste, food and kitchen waste from households, restaurants, caterers and retail premises, comparable waste from food processing plants and other waste with similar biodegradability properties that is comparable in nature, composition and quantity;”

FROM URBAN BIOWASTE TO BIO-BASED PRODUCTS

The RES URBIS project is mostly focusing on

• polyhydroxyalkanoate (PHA), a biodegradable natural biopolymer
• related PHA-based bioplastics (e.g through blends)
• fibers (to be also used for PHA-based biocomposites).
• bio-based solvents (to be also used in PHA extraction)
Bio-based plastics and PHA

<table>
<thead>
<tr>
<th>Feedstock</th>
<th>Synthesis</th>
<th>End of life</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil</td>
<td>Chemical</td>
<td>Biodegradable</td>
<td>PCL, PBS, PBAT, PBTS</td>
</tr>
<tr>
<td>Renewable</td>
<td>Biodegradable</td>
<td>Non biodegradable Easy to be recycled</td>
<td>PE, PP, PET...</td>
</tr>
<tr>
<td>Renewable</td>
<td>Biodegradable</td>
<td>PLA</td>
<td></td>
</tr>
<tr>
<td>Renewable</td>
<td>Biological</td>
<td>Biodegradable</td>
<td>starch-based, PHA’s</td>
</tr>
</tbody>
</table>

2011 analysis: 3.5 Mton, 1.5% of an overall polymer production of 235 Mton.

2020 forecast: 12 Mton (3 times more), 3% of about 400 Mton

Market trends

Strongest development is foreseen for drop-in biopolymers, chemically identical to their petrochemical counterparts but at least partially derived from renewable feedstock (PET, PE and PP, e.g. bio-based on bioethanol).

However, PLA and PHA are also expected to at least quadruple the capacity between 2011 and 2020.

(http://www.bio-based.eu/market_study/).

Figure 2: Bio-based polymers: Evolution of production capacities from 2011 to 2020
Why focusing on PHA?

Product related Pro’s
PHA is not a single polymer but a family of copolymers with a wide range of tunable properties, so that, PHA can be the main constituent of several bioplastics, with a wide portfolio of applications.

RES URBIS portfolio
- Biodegradable commodity film
- Packaging interlayer film
- Specialty durables (such as electronics)
- Premium slow C release system for groundwater remediation

Production process Pro’s
- A novel PHA production process *(open microbial cultures instead of pure strains)*, which can better cope with *large heterogeneity of the waste feedstock*,
- An upstream step, the *acidogenic fermentation*, which is both robust and tunable too.
- Overall, PHA production process is mostly *biological, under mild conditions and reliable*.
- Thus, the PHA-producing biowaste biorefinery is more sustainable, including an *easier integration with existing biological plants for waste and wastewater treatment*.
- Combining no-cost feedstock and novel processes, the cost of PHA can significantly decrease

Appealing: PHA is 3 times “Bio”
- Produced from renewable feedstock (*but no food*)
- Produced through biological process (*but no OGM*)
- Easily and “truly” *biodegradable*
 and it’s not recycled: it’s virgin material

Applications and economics
High market potential
As higher as more PHA cost decreases; *but still higher value than biogas and compost*

Already under investigation at TRL 6
An old story: PHA is stored in activated sludge under dynamic conditions

- Enhanced bio-P removal
- Bulking control

Time-changing conditions are imposed to the microbial consortium (non Monod-like growth)
- anaerobic/anoxic /aerobic cycles,
- and/or feast & famine

Late 80's

Physiological adaptation of each microbial species

Mid-90's

Selection of species that are more adaptable to growth under changing conditions

Mixed culture studies
Sequencing Batch Reactors
Acetate and other VFAs

Early 90's

Biomolecular tools, eg. FISH

Mid 00's

Pure culture studies
Usually, chemostat
Usually, acetate

Early 00's

Regulation towards triggering dynamic storage response

Moving to PHA production

Late 80's

Moving to PHA production
The key-role of the selection step

Selection of biomass with good storage properties

in order to obtain high storage performance in the accumulation step (rate, yield, PHA content)

Periodic dynamic feeding in Sequencing Batch Reactor (SBR), in order to create feast-famine (F/F) conditions

- A low Feast/Famine ratio is the key-factor to trigger for PHA storing microorganisms
- Volatile fatty acids are best substrates

Easy monitoring, online

\[\text{O}_2 \text{ (mg/L)} \]

\[\text{day 1} \quad \text{day 8} \quad \text{day 13} \]

\[\text{Time (min)} \]

\[0 \quad 50 \quad 100 \quad 150 \quad 200 \quad 250 \quad 300 \quad 350 \]
Typical process for PHA production from activated sludges and waste:

1. **Upstream**
 - Organic waste or wastewater
 - Acidogenic fermentation
 - Volatile fatty acids
 - Selection and production of biomass with high storage ability (e.g., SBR)
 - Acclimated biomass
 - Treatment or further valorization (through anaerobic digestion)

2. **Downstream**
 - Biomass with high PHA content to polymer extraction
 - Polymer production (batch reactor)
Preliminary analysis of a PHA-biogas integrated process

Alternative a)
Biogas only
- Biogas yield 0.75 m³/kgTVS; electric energy 2.56 kWh/m³
- EE value 60 €/MWh (no incentives) - continuous lines
 246/MWh (present italian incentives, worst case) - dotted lines

Alternative b)
PHA and biogas
- PHA yield 0.1 kg/kgTVS (worst case) or 0.2 (a better case);
- PHA value ranging between 500 and 5000 €/ton
- Either 0, 40, or 80 % of residual TVS are recovered into biogas

- In most conditions, PHA production offers an additional income with respect to biogas only (alternative b minus alternative a)
- The additional income can largely overcompensate the higher costs for PHA production with respect to biogas only (pilot scale investigation is in progress)
High TRL: pilot scale investigation is a key-feature of RES URBIS approach

Pilot scale platform of Universities of Venice and Verona at the wastewater treatment plant of Treviso (Alto Trevigiano Servizi, ATS)

Joint PHA production pilot plant, With Rome University «Sapienza»
RES URBIS structure

WP1 Territorial challenges
- T1.1 Mapping territorial clusters
- T1.2 Life Cycle Assessment

WP2 Technical challenges
- (process)
 - T2.1 Acidogenic fermentation
 - T2.2 PHA production
 - T2.3 Bio-based solvents
 - T2.4 PHA extraction
 - T2.5 Process integration

WP3 Technical challenges
- (product)
 - T3.1 Purity and impurities
 - (including microcontaminants)
 - T3.2 From PHA to bioplastics

WP4 Regulatory challenges
- T4.1 Regulatory constraints
- T4.2 Social barriers and drivers
- T4.3 End of waste criteria
- T4.4 Work safety and health

WP5 Exploitation
- T5.1 Stakeholder platform
- T5.2 Portfolio Development
- T5.3 Cost-benefit analysis
- T5.4 Integrated strategy roadmap

WP6 Dissemination
- T6.1 Dissemination plan
- T6.2 Web site
- T6.3 General communication
- T6.4 Technical communication
- T6.5 Workshops/Conferences

WP7 Management

WP8 Ethics
Exploring micropollutant migration and/or abatement in novel waste-to-product technologies is a “hot spot” for full exploitation of circular economy principles.

- When reusing or recovering waste, the environmental spreading of pollutants is a matter of scientific debate and a controversy at regulatory and social level.
- Even the agronomic reuse of compost, sludge and/or anaerobic digestate as soil improvers is subjected to severe limitations by environmental regulation but also social concern.
- But, emerging technology chains to obtain novel products are completely changing this scenario and require to reconsider contaminant migration in a different way than in waste “recycling” (i.e. not only based on selected origin and no-mixing principle).
- Hence, strong research effort has to be dedicated to:
 1. describe migration/transformation/abatement of relevant contaminants along novel and different technology chains.
 2. monitor possible presence of contaminants in bio-based products with specific reference to their final use.
 3. based on novel knowledge, to refine “end of waste” criteria in order to ensure protection of public health while not hindering exploitation of novel technology chains “ab initio”.
 4. Based on novel knowledge, eventually update the European regulatory frame.
 5. disseminate such a novel knowledge to verify social acceptance and eventually promote public procurement.

By solving open issues about contaminant migration from waste into end products, their market exploitation would be enormously facilitated and public health and environment protection would be warranted.
Can contaminant migrate from bio-waste to bio-based products?

Just one example: main steps of the PHA production from cheese whey were investigated in the presence of a pesticide (HexaChloroCycloExane, HCH).

Neither effect on acidogenic fermentation nor on PHA accumulation were investigated.

Valentino et al., 2015
RES URBIS consortium

- University
- Research Institute
- Industry
- Public Administration
- Territorial clusters

* stakeholder

<table>
<thead>
<tr>
<th>Process-related challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Roma “La Sapienza” (Italy)</td>
</tr>
<tr>
<td>New University of Lisbon (Portugal)</td>
</tr>
<tr>
<td>University Ca Foscari of Venice (Italy)</td>
</tr>
<tr>
<td>University of Barcelona (Spain)</td>
</tr>
<tr>
<td>University of South Wales (UK)</td>
</tr>
<tr>
<td>University of Bologna (Italy)</td>
</tr>
<tr>
<td>Biotrend (Portugal)</td>
</tr>
<tr>
<td>Physis (Italy)</td>
</tr>
<tr>
<td>CNR – IRSA (Italy)</td>
</tr>
<tr>
<td>Inst. Nat. Recherche Agronomique (France)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product-related challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>BioInicia (Spain)</td>
</tr>
<tr>
<td>Mi-Plast (Croatia)</td>
</tr>
<tr>
<td>Softer/Sabio (Italy)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Territorial clustering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empresa das Águas Livres (Portugal)</td>
</tr>
<tr>
<td>Barcelona Metropolitan Area (Spain)</td>
</tr>
<tr>
<td>Province Autonoma di Trento (Italy)</td>
</tr>
<tr>
<td>Rhondda Cynon Taff County Council (UK)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Economics and exploitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inno-EXC (Switzerland)</td>
</tr>
<tr>
<td>Bio-Based and Biodegradable Industries Association (UK)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Regulation, safety, environmental and social aspects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical University of Denmark (Denmark)</td>
</tr>
<tr>
<td>National Institute for work safety (Italy)</td>
</tr>
<tr>
<td>University of Verona (Italy)</td>
</tr>
</tbody>
</table>
An additional high-value «partner»: the Stakeholder Platform

<table>
<thead>
<tr>
<th>Stakeholder</th>
<th>Type</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhondda Cynon Taff County Council (RCT)</td>
<td>Public Authority</td>
<td>Collection and management of municipal waste in Rhondda Cynon Taff (Wales)</td>
</tr>
<tr>
<td>AMA Roma</td>
<td>Company</td>
<td>Collection and management of municipal waste in Rome, Italy</td>
</tr>
<tr>
<td>Ecoparc del Mediterrani SA</td>
<td>Company</td>
<td>Collection and management of municipal waste in Barcelona, Spain</td>
</tr>
<tr>
<td>MWE - Municipal Waste Europe</td>
<td>Platform</td>
<td>The European association representing municipalities responsible for waste management and their publicly owned waste management companies</td>
</tr>
<tr>
<td>Waste and Resources Action Programme (WRAP)</td>
<td>Charity</td>
<td>Helping individuals, businesses and local authorities to reduce waste, recycle and use recycled content material</td>
</tr>
<tr>
<td>WssTP - European Technology Platform for Water</td>
<td>Platform</td>
<td>Water Supply and Sanitation Technology Platform, for research and development aimed at providing safe, clean and affordable water services while protecting nature.</td>
</tr>
<tr>
<td>EurAqua - European Network of Freshwater Research Organisations.</td>
<td>Research Association</td>
<td>The aim of EurAqua is to give significant input on the development of the scientific and economic basis of European water management.</td>
</tr>
<tr>
<td>ASOBIOCOMP</td>
<td>Association</td>
<td>Spanish association of bioplastic industries.</td>
</tr>
<tr>
<td>ASSOBIOPLASTICHE</td>
<td>Association</td>
<td>Italian association of bioplastic industries.</td>
</tr>
<tr>
<td>more coming soon</td>
<td>...........</td>
<td>...................</td>
</tr>
</tbody>
</table>
Is it worthwhile to put all this effort together?

Let’s go to estimate potential impacts

Based on a preliminary mass balance of the new technology chain, an **OFMSW collection area of about 3,000,000 inhabitants** might guarantee the throughput of ~ **8 Kton PHA/year**.

Co-treatment with other urban biowaste (excess sludge, markets and park/garden waste) from the same area can increase the production capacity to ~ **20 kton PHA/year**.

This PHA production capacity would result into revenues of ~ **80 million EUR per year**, margins of ~ 40% and the creation of ~ 100 new jobs for the cluster.

Under assumption of co-treatment, sustainable operative margins can be achieved even at smaller size, e.g from **500,000 inhabitants**. This is the smallest cluster being considered in the RES URBIS (Province of Trento).

According to population distribution in Europe (BBSR 2011), there are **115 Metropolitan Areas** which have more than **500,000 inhabitants** each and an average size of 3 million.

Thus, ~ **343 million people live in metropolitan areas** that have a suitable size to exploit the RES URBIS approach, which means a potential of producing **2,2 million ton PHA per year** (excluding food-processing waste), 8.8 billion € and ~ 10 000 new green jobs in Europe.

This PHA production is ~ 10 times more than present PHA production capacity worldwide but still less than 10% of present consumption of oil-based plastics in Europe.
Thanks for your attention

For more information on RES URBIS project:
mauro.majone@uniroma1.it
Web site: www.resurbis.eu

Financial support by EU Horison 2020 Programme under Grant Agreement 730349 is gratefully acknowledged.