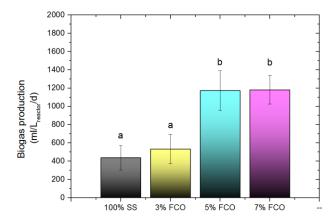
Boosters for anaerobic co-digestion of sewage sludge

A. E. Maragkaki^{1,2}, M. Fountoulakis¹, A. Kyriakou², K. Lasaridi², T. Manios¹

¹Laboratory of Solid Waste & Wastewater Management, School of Agricultural Technology, Technological

Educational Institute of Crete, Heraklion, 71500, Crete, Greece

²Harokopio University, Department of Geography 70 El. Venizelou, 176 71 Kallithea, Athens, Greece


Keywords: Anaerobic co-digestion; Food waste; Cheese whey; Olive mill wastewater;

Presenting author email: amaragkaki@staff.teicrete.gr

Anaerobic co-digestion of sewage sludge and other organic wastes at a wastewater treatment plant (WWTP) is a promising method for both energy and material recovery. Some agro-industries such as olive oil mills and cheese factories represent a considerable share of the Mediterranean countries economy. The by-products of olive oil production such as olive mill wastewaters (OMW) pose a serious environmental risk. Cheese whey (CW) is a by-product during cheese manufacturing. This article focuses on a thermal pre-treatment mixture of food waste and two representatives, seasonally produced agro-industrial wastes, for Greece: olive mill waste water and cheese whey.

Optimization of biogas production from sewage sludge (SS) was attempted by co-digesting with a mixture of food waste, cheese whey and olive mill wastewater (FCO). A series of laboratory experiments were performed in continuously-operating reactors at 37 °C, fed with thermal pre-treated mixtures of FCO at various concentrations 3%, 5% and 7%. FCO addition can boost biogas yields, if the mixture exceeds 3% (v/v) concentration in the feed. Any further increase of 5% FCO causes a small incensement in biogas production. The reactor treating the sewage sludge produced 287 ml CH₄/L_{reactor}/d before the addition of FCO and 815 ml CH₄/L_{reactor}/d (5% v/v in the feed). The extra FCO-COD added (7% FCO v/v) to the feed did not have a negative effect on reactor performance, but seemed to have the same results (fig.1). In all cases, biodegradability of mixtures estimated to be higher than 80%, while the VS removal was 22% for the maximum biomethane production (5% v/v). Moreover, co-digestion improved biogas production by 1.2-2.7 times. The best d-COD removal efficiency of approximately 84% was achieved for 5% and & 7% FCO substrates (fig.2).

The concept of co-digestion a mixture of pre-treated food waste, cheese whey and olive mill wastewater could be a promising perspective at wastewater treatment plants as it increases methane production significantly. Results show a great ascendancy of 5% and 7% FCO mixtures with sludge, as they improve significantly the biogas production rate.

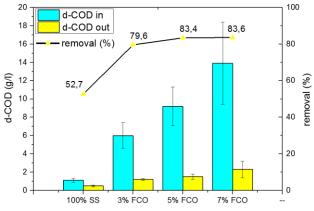


Figure 1. Biogas production (ml/ $L_{reactor}/d$) for different concentrations of substrates. Different letters indicate significant differences with p<0.05. Error bars indicate standard deviation of the biogas production.

Figure 2. D-COD removal and d-COD concentrations in the influent (in) and effluent stage (out). Error bars indicate standard deviation.

ACKNOWLEDGMENTS

The work presented in this paper has been partially funded by the project "Pilot development, operation and evaluation of a combined biological waste management system of the Municipality of Ilioupoli.