5th International Conference on Sustainable Solid Waste Management ATHENS2017, Greece

Syngas production in dry reforming of methane using phosphate-based and conventional catalysts

B. Rego de Vasconcelos, D. Pham Minh, P. Sharrock, **A. Nzihou**

RAPSODEE Research center, CNRS 5302, Mines Albi, France

I. Introduction

- Worldwide challenge about climate change
- Synthetic gas (syngas) from biomass, bio-waste and residues
- From greenhouse gases to fuel and biocommodities
- **Syngas Composition and end-use**
- II. State-of-the-art Catalysts development
- **III. Phosphate catalysts production**
- **IV. Materials and Methods**
- V. Results and discussion
- **VI. Conclusions**

I. Introduction

Worldwide challenge about climate change

Global warming:

Main cause: Increase in greenhouse gases (GHGs) emissions due to fossil fuel combustion and industrial activities

Global greenhouse gas emissions by gas

CO₂, CH₄, NO_x, H₂O vapor, O₃

Combustion of hydrocarbons and biomass, natural gas, biogas

- CO₂ waste streams (flare, purge gas...)
- Hydrocarbons with high CO₂ contents

Dry reforming of methane (DRM)

Valorization

Mitigate and/or get ride of GHGs

P. M. Mortensen *et al*, Appl. Cat. A Gen., vol. 495, pp. 141-151, 2015. http://www3.epa.gov/climatechange/ghgemissions/global.html

I. Introduction

Synthetic gas (syngas) from biomass, bio-waste and residues

FT*: Fisher Tropsch DRM*: Dry Reforming of Methane

I. Introduction

From greenhouse gases to fuel and biocommodities

I. Introduction Syngas Composition and end-use

Source : Butterman HC, Castaldi MJ; Environ. Sci. Technol. 2009 43, 9030-9037

Air, oxygen

Porous cathode

Electrolyte

Porous anode

 $0_2 + 4e \implies 20^{2-1}$

02-

I. Introduction

- Worldwide challenge about climate change
- Synthetic gas (syngas) from biomass, bio-waste and residues
- From greenhouse gases to fuel and biocommodities
- Syngas Composition and end-use

II. State-of-the-art – Catalysts development

- III. Phosphate catalysts production
- IV. Materials and Methods
- V. Results and discussion
- VI. Conclusions

II. State-of-the-art – Catalysts development

Active phase:

- Noble metals : Ru, Pd, Pt...
 Catalytic performance
 Cost
- Transition metals : Ni, Co, Fe ... Catalytic performance Cost Coke deposition
- Support:
 - Well-established supports used for similar reactions (SRM): Al₂O₃, SiO₂, ...
 - Oxygen storage capacity (OSC): CeO₂, ZrO₂, rare-earth metal oxides...

OSC Oxidation of coke

Increased basicity

Basicity **CO**₂ adsorption **removal of coke**

Mg, K, Ca...

- Current research:
 - Metal-organic frameworks (MOFs), bi and three metallic catalysts, etc ...
- This work:
 - Active phase: Ni
 - Support: Hydroxyapatite (Ca₁₀(PO₄)₆(OH)₂)

I. Introduction

- Worldwide challenge about climate change
- Synthetic gas (syngas) from biomass, bio-waste and residues
- From greenhouse gases to fuel and biocommodities
- Syngas Composition and end-use
- II. State-of-the-art Catalysts development

III. Phosphate catalysts production

- IV. Materials and Methods
- V. Results and discussion
- VI. Conclusions

III. Phosphate catalysts production Why hydroxyapatite (CaHA) for energy?

Ion exchange and solid solutions

Cristalline structure : hexagonal Gaps in cationic sites and OH

Chemical stability:

- Low solubility in water, solubility product of the order of 10⁻⁵⁹
- Thermal stability:
 - Transformation into oxy-hydroxyapatite at T > 1000°C
 - No sintering below 700°C

Presence of acid and basic sites = f(Ca/P)

¹University of Liverpool, <u>http://www.chemtube3d.com/solidstate/SShydroxyapatite.htm</u>

III. Phosphate catalysts production Why hydroxyapatite (CaHA) for energy?

- Ion exchange
- Chemical stability:
 - Low solubility in water, solubility product of the order of 10⁻⁵⁹
- Thermal stability:
 - Transformation into oxy-hydroxyapatite at T > 1000°C
 - No sintering below 700°C
- Presence of acid and basic sites = f(Ca/P)

- ✓ Zeolites
- Catalysts
 - ✓ Sorbents

¹Chap1: Biological Apatites in Bone and Teeth, in Nanoceramics in Clinical Use: From Materials to Applications (2), 2015, 1-29; ISBN:978-1-78262-255-0

I. Introduction

- Worldwide challenge about climate change
- Synthetic gas (syngas) from biomass, bio-waste and residues
- From greenhouse gases to fuel and biocommodities
- Syngas Composition and end-use
- II. State-of-the-art Catalysts development
- III. Phosphate catalysts production

IV. Materials and Methods

- V. Results and discussion
- VI. Conclusions

IV. Materials and Methods

Catalysts preparation

 \Rightarrow Support :

 $Ca_{10}(PO_4)_6(OH)_2$: CaHA

- CaHA1 ($S_{BET} = 7m^2/g, V_p = nd$)
- CaHA2 ($S_{BET} = 60m^2/g$, $V_p = 0.07cm^3/g$)
- $AI_2O_3(S_{BET} = 170m^2/g, V_p = 0.42cm^3/g)$
- PuralMG30 (Sasol): MgO:Al₂O₃ (wt%) = 30:70 (S_{BET} = 148m²/g, V_p = 0.17cm³/g)

IV. Materials and Methods

Experimental apparatus

*Weight hourly space velocity (WHSV = Mass Flow/Catalyst Mass).

I. Introduction

- Worldwide challenge about climate change
- Synthetic gas (syngas) from biomass, bio-waste and residues
- From greenhouse gases to fuel and biocommodities
- Syngas Composition and end-use
- II. State-of-the-art Catalysts development
- III. Phosphate catalysts production
- IV. Materials and Methods
- V. Results and discussion
- VI. Conclusions

V. Results and discussion

Ni particles are not discernable

V. Results and discussion

Comparative study: hydroxyapatite-based catalysts / commercial catalysts

Catalyst	Conditions	CH ₄ Conversion H ₂ /CO Reaction time	Bibliography
5%Ni/CaHA2_S	T = 700°C P = 1,6bar WHSV = 12,3Lh ⁻¹ g _{cat} ⁻¹	<mark>≈80-60%</mark> 0,7-1,0 300h	This work
5%NiLa ₂ O ₃ /ZrO ₂	$T = 700^{\circ}C$ $P = P_{atm}$ $GHSV = 15$	70% 0,95 50h	Rezaei et al., App Cat B 77 (2008) 346-354
6%NiK/Al ₂ O ₃	$T = 700^{\circ}C$ $P = P_{atm}$ $GHSV = 22,5$	57% nd 24h	Juan-Juan et al., App Cat A 301 (2006) 9-15
1%Pd/Al ₂ O ₃	$T = 700^{\circ}C$ P = P _{atm} WHSV = 0,4Lh ⁻¹ g _{cat} ⁻¹	44% 0,9 6h	Shi et al., App Cat B 170-171 (2015) 43-52
1%Pt/CeO ₂ -Al ₂ O ₃	$T = 700^{\circ}C$ $P = P_{atm}$ $GHSV = nd$	90% 0,9 6h	Carvalho et al., App Cat A 473 (2014) 132- 145

I. Introduction

- Worldwide challenge about climate change
- Synthetic gas (syngas) from biomass, bio-waste and residues
- From greenhouse gases to fuel and biocommodities
- Syngas Composition and end-use
- II. State-of-the-art Catalysts development
- III. Phosphate catalysts production
- IV. Materials and Methods
- V. Results and discussion

VI. Conclusions

VI. Conclusions

- Ni/CaHA2_S : active and stable catalyst and comparable to commercial catalysts and results reported in the literature
- Motivation for developing a novel P-based and efficient catalyst for DRM

 \uparrow Conversion GHGs, \downarrow Selectivity for side products

- $\uparrow S_{BET}, V_p$
- ↓ Size of Ni particles

- ↑ Metal-support interaction
- ↑ Support basicity

Future works

- Bimetallic catalysts: Expand the hydroxyapatite properties by adding two different metals in its structure (synergy between added metals)
- Understanding the associated mechanisms
- Injection of a controlled amount of steam
- Energy Balance

ACKNOWLEDGEMENTS

Current academic collaborations

America

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Africa

Europa

DUBL

Asia

My research team

