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l. Introduction
Worldwide challenge about climate change

Global warming:
Main cause: Increase in greenhouse gases (GHGs) emissions due to fossil
fuel combustion and industrial activities

Global greenhouse gas emissions by gas CcO,, CH,, NO,, H,O vapor, 03
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Valorization
Mitigate and/or get ride of GHGs

P. M. Mortensen et al, Appl. Cat. A Gen., vol. 495, pp. 141-151, 2015.
http:/mwww3.epa.gov/climatechange/ghgemissions/global.html



l. Introduction
Synthetic gas (syngas) from biomass, bio-waste and residues

Synthetic gas
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l. Introduction
From greenhouse gases to fuel and biocommodities

CH, + CO, DRM 2CO + 2H; all Fuels, Biocommodities
Greenhouse gases as feedstock
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l. Introduction
Syngas Composition and end-use

Alr, oxygen
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Source : Butterman HC, Castaldi MJ; Environ. Sci. Technol. 2009 43, 9030-9037
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State-of-the-art — Catalysts development

- Noble metals : Ru, Pd, Pt... “f Catalytic performance 4@ Cost
. Transition metals : Ni, Co, Fe .. Catalytic performance ¥ Cost 4 Coke deposition

« Well-established supports used for similar reactions (SRM): Al,O,, SiO,, ...
« Oxygen storage capacity (OSC): CeO,, ZrO, rare-earth metal oxides...

f OSCf Oxidation of coke
» Increased basicity

f Basicity fCO2 adsorption f removal of coke
Mg, K, Ca...

» Metal-organic frameworks (MOFs), bi and three metallic catalysts, etc ...

This work:
« Active phase: Ni

« Support: Hydroxyapatite (Ca,,(PO,)s(OH),)
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Ill. Phosphate catalysts production
Why hydroxyapatite (CaHA) for energy?

= Jon exchange and solid solutions

@
M10(204)6x2
Ca, Sr, Ba, Cd, Pb, l DR L
Mg, Na, K, H, D, ..§ OM. 0D, €050, 9% | =g
BO,, F, Br, vacancies,.=— 'S i@ _ﬂ
. e © ‘\O\AI
P, CO, V, As, S, Si, Ge, Cr, B, ... Hydroxyapatite structure!

Cristalline structure : hexagonal

= Chemical stability: Gaps in cationic sites and OH

« Low solubility in water, solubility product of the order of 10-59
» Thermal stability:

« Transformation into oxy-hydroxyapatite at T > 1000°C
* No sintering below 700°C

= Presence of acid and basic sites = f(Ca/P)
10

lUniversity of Liverpool, http://www.chemtube3d.com/solidstate/SShydroxyapatite.htm



http://www.chemtube3d.com/solidstate/SShydroxyapatite.htm
http://www.chemtube3d.com/solidstate/SShydroxyapatite.htm

Il. Phosphate catalysts production
Why hydroxyapatite (CaHA) for energy?

Competitive materials:

v Zeolites
« Low solubility in water, solubility product of the order of 10-59 v Catalysts
v Sorbents
« Transformation into oxy-hydroxyapatite at T > 1000°C
* No sintering below 700°C
Ca/P
Ca/lP<1,5 1,5<CalP<1,67 Ca/P > 1,67
OH 5 OH O
OH, , , S 4
P P
ST ) B
‘”O/ \ -0 = 0~ O/ O"?}
l
Acidic <€ Neutral > Basic

11
1Chap1: Biological Apatites in Bone and Teeth, in Nanoceramics in Clinical Use: From Materials to Applications (2), 2015, 1-29; ISBN:978-1-78262-255-0
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IVV. Materials and Methods
Catalysts preparation

= Support :

Ca,((PO,)s(OH), : CaHA

* CaHAL (Sggr = 7m?/g, V,, = nd)

© CaHA2 (Sggr = 60m?/g, V, = 0.07cm?/g)
* ALO4(Sger = 170m2g, V, = 0.42cm3/g)

* PuralMG30 (Sasol): MgO:Al,O4
(wt%) = 30:70
(Sger = 148m?/g, V,, = 0.17cm?/g)

Catalysts preparation:

1°) Doping of support 2°) Drying :
with Ni(NO3),: 5Swt%Ni T = 105°C

E Incipient N
: wetness
i impregnation

(IW1)

4°) Characterization :
- XRD

SEM, TEM

TGA

TPX, x being:
R (reduction), O (oxidation), D (desorption)...

3°) Calcination :
T =500°C, t =2h

13



V. Materials and Methods
Experimental apparatus

M2

2| oo, 250mm

Catalytic evaluation:

WHSV* = 15882 mLh-g,,,*
t = 50h-300h

Maximum operating conditions:

T =700°C

*Weight hourly space velocity (WHSV = Mass Flow/Catalyst Mass).

_____________________________________

= = = T = 850°C
e > max
e ] %C P, = 30 bar
- = et
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V. Results and discussion

Catalyst
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16

Ni particles are not discernable




V. Results and discussion

Comparative study: hydroxyapatite-based catalysts / commercial catalysts

CH, Conversion

Catalyst Conditions H,/CO Bibliography
Reaction time
T =700°C =80-60%
5%Ni/CaHA2_S P =1,6bar 0,7-1,0 This work
WHSV = 12,3Lh1g_* 300h
T =700°C 70%

Rezaei et al., App Cat

5%NiLa,0,/Zr0, P =P, 0,95 )
GHSV = 15 50h B 77 (2008) 346-354
T=700°C 57%
ISt
GHSV =225 24h
= ° 0
0 ! _700 ¢ a4 Shi et al., App Cat B
16PA/ALO; P = Pam 0.9 170-171 (2015) 43-52
WHSV = 0,4Lh1g .t 6h
T=700°C 90% Carvalho et al., App
1%Pt/CeO,-Al,LO; P =P, 0,9 Cat A 473 (2014) 132-
GHSV =nd 6h 145

) Ni/CaHA?2_S: promising catalyst for DRM 1
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VI. Conclusions

= Ni/CaHAZ2_S : active and stable catalyst and comparable to commercial
catalysts and results reported in the literature

= Motivation for developing a novel P-based and efficient catalyst for DRM
TConversion GHGs, | Selectivity for side products

* 1Sgem VY, « 1 Metal-support interaction

« | Size of Ni particles * 71 Support basicity

Future works

= Bimetallic catalysts: Expand the hydroxyapatite properties by adding two
different metals in its structure (synergy between added metals)

= Understanding the associated mechanisms
= [njection of a controlled amount of steam

= Energy Balance

19
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