

National Autonomous University of Mexico

Master's and PhD Program in Engineering Environmental engineering

TOWARDS TO ANAEROBIC CO-DIGESTION OF OFMSW BASED ON THE ANALYSIS OF CHEESE WHEY AND MEAT WASTE ON TWO TYPES OF SLUDGE

Authors

Mariela Yuvinka Peña Vargas and Alfonso Durán-Moreno

Lab 301-303, Conj. E, Faculty of Chemistry, CU, México City June, 2017

Outline

- 1. Background
- 2. Method
- 3. Results
- 4. Conclusions

Supply and Demand of energy(*)

 Fuels	Supply (PJ)	Demand (PJ)
México	8,624	5,128

The Mexican Law for the Use of Renewable Energy and the Financing of Energy Transition (LAERFTE, 2008) establishes that, by 2024, participation of non-fossil sources in electricity generation will be 35% in Mexico.

Current situation.

Substrates for Anaerobic Digestion

Tendency to flexibilize the production of biogas according to the energy demand

Reference: Prepared based on Bechamp, 2010; EUR-Lex. 2015.

Food waste by type in Mexico

In Mexico, 47% is discharged to sewer system The CW produced has a pH of 5 to 5.8.

Waste from the meat industry

National Consumption by origin

3. Aim

Assess anaerobic co-digestion of OFMSW based on the analysis of cheese whey (CW) and meat waste (MW) on two types of sludge to increase biogas production.

Origin of substrates and seed sludge

OFMSW

Cuautitlán Izcalli (65 kg)

Granular (20 L)

MW

Santa Cruz Market (10 kg)

Sludge

CW

Santa Rosa Farm (10 L)

Suspended (20 L)

Reduced particle size

Characterization based on Standard Methods

Batch experiments

Analysis and experimental follow-up

Parameters	Initials/finals	Daily	Weekly
Solids (ST, SF, SV)	•		
COD	•		
Nitrogen	•		
Biogas (CO ₂ and CH ₄)		•	•
рН	•		

Suspended Granular Operational conditions

Reactor Capacity: 500 mL

Working volume: 400 mL

Temperature: 35 ° C

Biogas quantification

Volume: increase in pressure

Composition: gas chromatography

Variable response: methane volume

Parameter	Unit	OH	FMSW		CW		MW		nular dge		spended sludge
рН		5.05	± 0.14	3.67	± 0.14	7.15	± 0.14	6.71	± 0.12	6.5	± 0.13
Humidity	%	86	± 0.14	94	± 0.14	50	± 0.14	92	± 0.15	90	± 0.16
COD	gO ₂ /kg	50	± 1.3	72	± 1.3	73	± 1.3	47	± 0.3	72	± 0.7
TS	g/kg	130	± 5.6	64	± 5.6	531	± 5.6	61	± 1.3	96	± 0.1
VS	g/kg	125	± 17	54	± 17	522	± 17	61	± 0.9	96	± 1.3
NH ₄ -N	g/kg	0.2	± 0.01	0.3	± 0.01	0.5	± 0.01	-	-	-	-
Nitrogen*	g/g	2	± 0.14	2	± 0.14	9	± 0.14	-	-	-	-
Carbon*	g/g	44	± 1.3	36	± 1.3	68	± 1.3	-	-	_	-
Hydrogen*	g/g	5	± 5.6	6	± 5.6	9	± 5.6	-	-	-	-
Carbohydrates	g/kg	118	± 17	18	± 17	4.1	± 17	_	-	-	-
Lipids	g/kg	39	± 0.14	1.6	± 0.14	72	± 0.14	_	-	-	-
Proteins	g/kg	34	± 0.14	11	± 0.14	155	± 0.14	-	=	-	-
Lignin	g/kg	30	± 1.3	-	-	-	-	-	-	-	-
Cellulose	g/kg	47	± 5.6	-	-	-	-	-	=	-	-
Hemicellulose	g/kg	12	± 17	-	-	-	-	-	-	-	-

		Reactor	-	vs anaerobic odigestion*	90 days anaerobic codigestion*		
Seed sludge	Initial conditions		VFA (g L ⁻¹)	Biogas production (NL kgVS ⁻¹)	VFA (g L ⁻¹)	Biogas production (NL kgVS ⁻¹)	
	OFMSW+CW	R1	3.4	113	2.7	140	
Granular	OFMSW+MW	R2	7.9	132	1.0	383	
	OFMSW	R3	1.0	45	0.7	115	
	OFMSW+ CW	R4	9.7	81	3.9	107	
Suspended	OFMSW+MW	R5	10.9	101	4.3	105	
	OFMSW	R6	1.3	6.8	0.7	27	

			TS	TS	VS	VS	COD	COD	
Reactor	RT	pН	(g/ kg)	removed (%)	(g/ kg)	remove d (%)	(gO2/kg)	removed (%)	
R1	Initial	8.3	102	47.5	84	51.1	71	70.4	
	Final	6.7	53.5	_	41	_	21		
R2	Initial	8.3	104	52.8	98	61.2	70	44.2	
	Final	6.8	49	_ • = . •	38		39		
R3	Initial	8.1	77	_ 19.4	61	29.5	73	53.4	
	Final	6.3	62		43		34		
R4	Initial	8.2	73	63.0	63	71.4	77	75.3	
	Final	6	27		18		19		
R5	Initial	8.3	86	68.6	80	76.2	58	48.2	
	Final	5.8	27		19		30	· 	
R6	Initial	8	104	81.7	96	90.6	28	_ 60.7	
	Final	6.7	19		9		11		

Figure 2. Daily variation of biogas production under BPM test at 35°C, granular sludge.

Figure 3. Process performance on suspended sludge and daily quantity of biogas production

.

7. Conclusions

- The highest concentration of VFA at the end of the first stage (45-day) was R1, and thereafter due to the accumulation decreased the biogas production.
- At the end of co-digestion, (90-day) high biogas yield of 383 NL kgVS⁻¹ was observed at R2; co-digestion of mixtures of meat waste with OFMSW allows higher production of biogas.
- The highest production of biogas was from reactors operated with granular sludge.
- The conclusions of this study apply to lab-scale batch operations, therefore, a further improvement of the seeded sludge is deemed required to increase the rate of either CW or MW in codigestion with OFMSW.

National Autonomous University of Mexico

Master's and PhD Program in Engineering Environmental engineering

Thank you

