

Stabilization of heavy metals using low-grade magnesia EAFD, Portland and Sorel cement

E. Ntinoudi¹, E. Pantazopoulou¹, M. Mitrakas², H. Yiannoulakis³, Th. Zampetakis³, <u>A.I. Zouboulis¹</u>

¹ Department of Chemistry, Aristotle University of Thessaloniki, Greece
² Department of Chemical Engineering, Aristotle University of Thessaloniki, Greece
³ R&D Center, Grecian Magnesite S.A., Thessaloniki, Greece

5th International Conference on Sustainable Solid Waste Management

Outline

Introduction

Stabilization/Solidification

Magnesia (MgO)

Magnesia cement

Portland cement

Characterization of wastes (EAFD, Pb-RFD)

Stabilization of EAFD & Pb-RFD

Method

Results

Conclusions

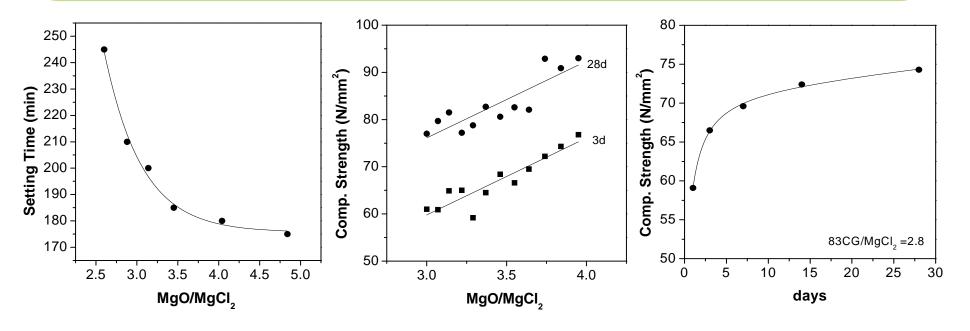
Stabilization/Solidification

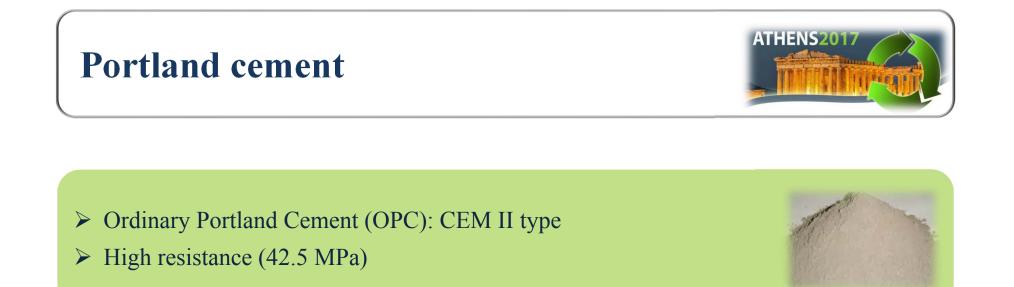
- Stabilization/solidification (S/S) aims to convert hazardous substances to more stable chemical forms that are much less soluble, mobile and toxic, using various additives.
- Portland cement, hydrated lime, phosphoric compounds, pozzolanic materials, such as fly ash, have been commonly used as stabilizing additives in the S/S processes.
- Stabilization refers to those techniques that reduce the hazardous behavior of wastes by means of chemical reactions, whereas solidification refers to techniques that can generate a monolithic solid of high structural integrity.
- Stabilized/solidified wastes can be safely disposed into the environment with minimal risk of leaching toxic substances and polluting surface water or groundwater resources.

Magnesia (MgO)

- MgO is a Grecian Magnesite S.A. product (microcrystalline caustic calcined MgO)
- ➢ Nominal purity 83.4%
- Impurities: CaO, SiO₂, Al₂O₃, Fe₂O₃, SO₃
- Specific surface area 32 m²/g, milled below 200 μm

- MgO: A widest spectrum of applications, such as agricultural, industrial & chemical, construction, steel & refractories & environmental
- Environmental applications: Flue gas treatment, soil decontamination and remediation, domestic and industrial solid waste treatment


Magnesia cement



- Magnesium Oxychloride Cement (MOC) or Sorel Cement:
 - $3MgO + MgCl_2 + 11H_2O \rightarrow 3Mg(OH)_2.MgCl_2.8H_2O$ (phase 3)
 - $5MgO + MgCl_2 + 13H_2O \rightarrow 5Mg(OH)_2.MgCl_2.8H_2O$ (phase 5)
- High strength, abrasion resistance & bonding
- MOC lower water resistance than MPC
- Magnesium Phosphate Cement (MPC):

MgO + phosphate + $H_2O \rightarrow$ phosphate phase

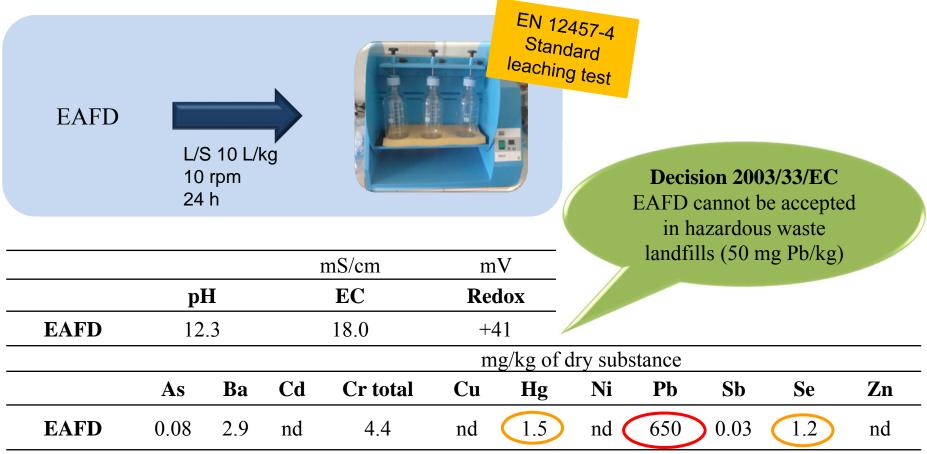
Toxic elements could be fixed in the resulting hydrated compound through the respective hydration reaction:

 $A + B + H_2O \rightarrow H(M)OH_2$

where

A: OPC

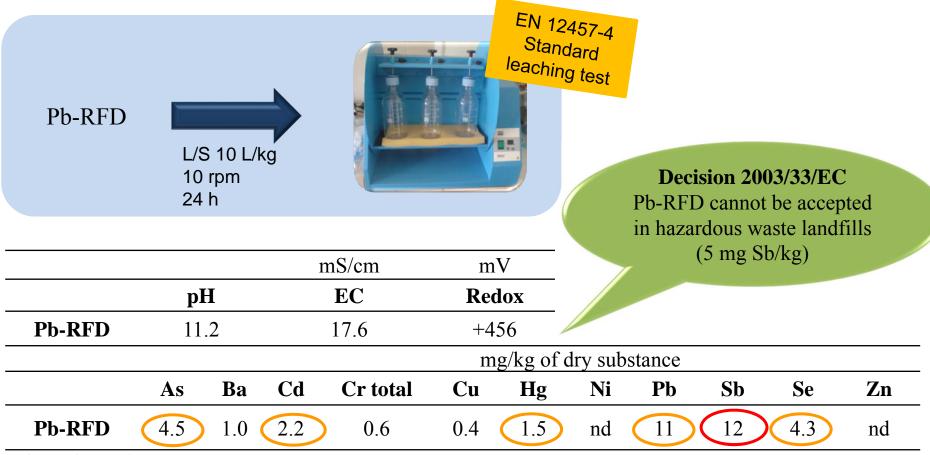
B: waste containing heavy metals


M: heavy metal

H(M)OH₂: hydrated compound containing M

Characterization of EAFD

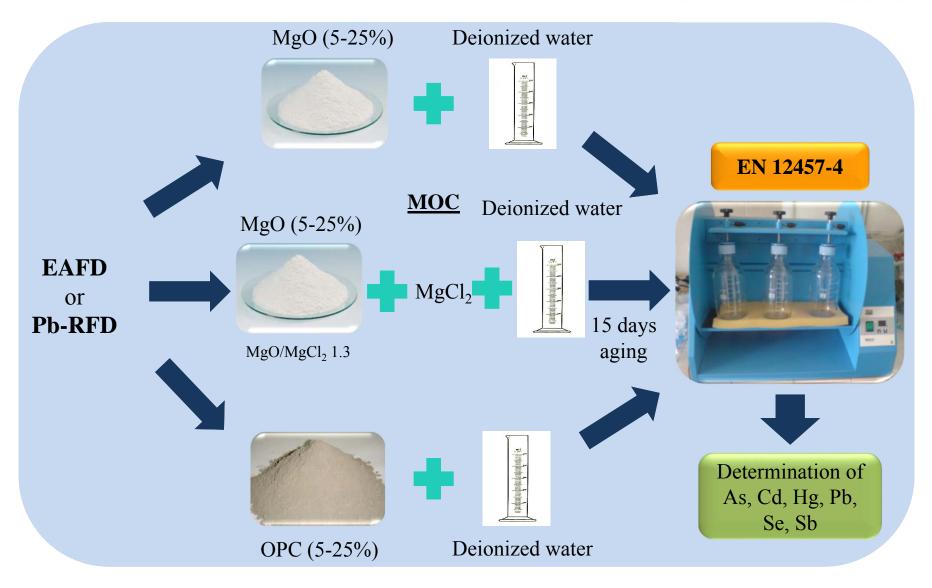
> EAFD is a by-product of steel production in scrap recycling facilities


nd: not detected

*Values which exceed the regulation limits for disposal in non-hazardous waste landfills (Decision 2003/33/EC) **Values which exceed the regulation limits for disposal in hazardous waste landfills (Decision 2003/33/EC)

Characterization of Pb-RFD

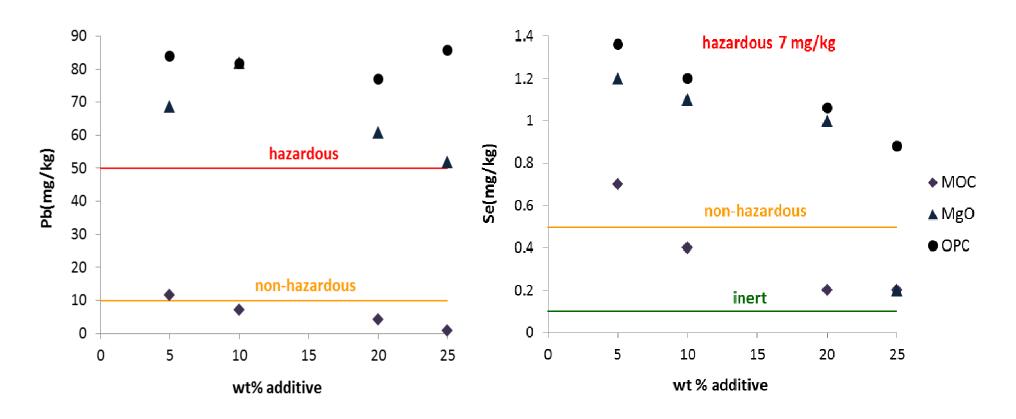
> Pb-RFD is produced during secondary lead production


nd: not detected

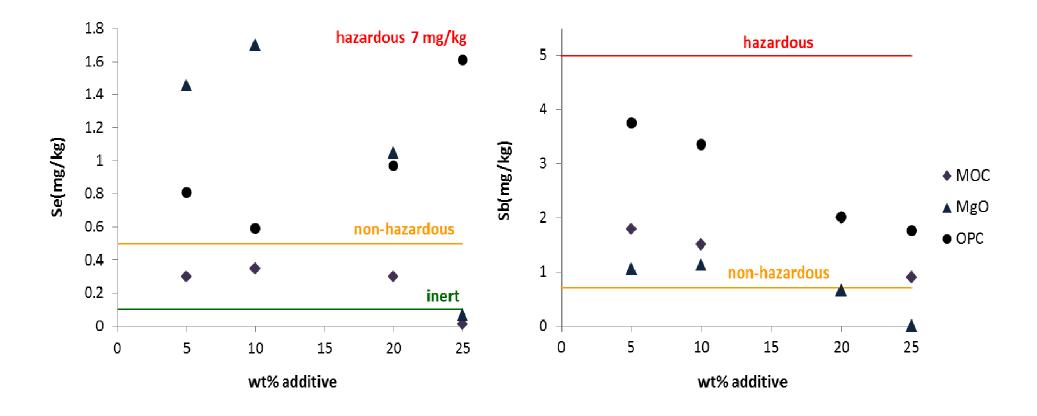
*Values which exceed the regulation limits for disposal in non-hazardous waste landfills (Decision 2003/33/EC)

**Values which exceed the regulation limits for disposal in hazardous waste landfills (Decision 2003/33/EC)

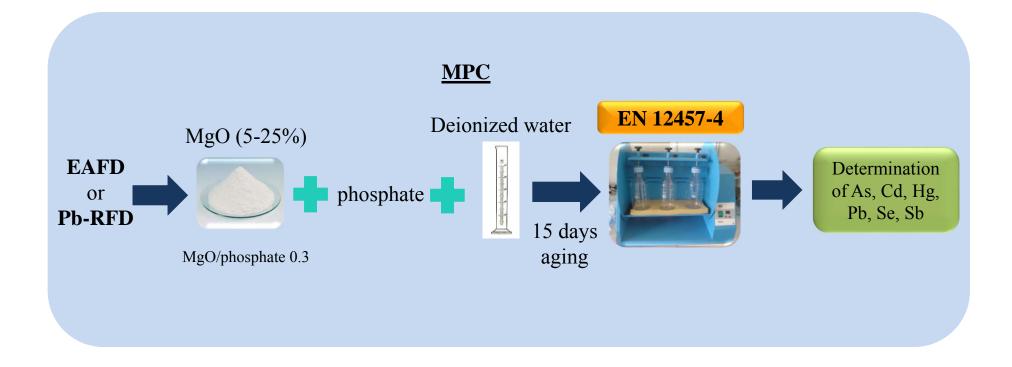
Stabilization: Method



Stabilization of EAFD: Results


- ➢ MOC: Hg nd
- OPC: Hg nd, MgO: Hg nd/0.01 mg/kg (< limit values of non-hazardous wastes)</p>
- MgO: pH 11.0-12.0, OPC: pH 11.5-12.0, MOC: pH 9.8-10.2
- MOC: very good bonding behavior, significantly decreased leaching of Hg, Pb and Se

Stabilization of Pb-RFD: Results



- MOC: As, Cd, Hg, Pb nd
- ➤ MgO, OPC: As, Cd, Hg, Pb < limit values of non-hazardous wastes
- ▶ MgO: pH 10.0-11.0, OPC: pH 10.5-11.0, MOC: pH 9.5-10.0
- MOC: very good bonding behavior, significantly decreased leaching of heavy metals

Stabilization of wastes using MPC: Method

Stabilization of wastes using MPC: Results

EAFD

EAFD			mg/kg of dry substance		
wt % MgO	pН	Hg	Pb	Se	
5	10.1	0.12	4.4	0.12	
10	10.5	0.01	3.0	0.14	

MPC: very good bonding behavior, significantly decreased leaching of Hg, Pb and Se (below the limit values of non-hazardous wastes)

Pb-RFD

> MPC: very good bonding behavior, significantly decreased leaching of heavy metals

Pb-RFD			mg/kg of dry substance					
wt % MgO	pН	As	Cd	Hg	Pb	Sb	Se	
10	10.3	0.2	nd	0.04	1.7	2.8	0.8	
20	10.6	0.2	nd	0.02	0.2	0.7	0.3	

nd: not detected

*Values which exceed the regulation limits for disposal in non-hazardous waste landfills (Decision 2003/33/EC)

Conclusions

- > EAFD and Pb-RFD cannot be accepted in hazardous waste landfills.
- ➤ Using only MgO or OPC manages to reduce heavy metal's leaching, above the expected dilution, but not below the limit values for non-hazardous waste landfills.
- ➢ The proposed stabilization process, using magnesia cement (MOC, MPC), is an effective method for heavy metal immobilization.
- Stabilized EAFD with MOC: Pb, Hg & Se are below the maximum limits for nonhazardous waste landfills, when using MgO above 10 wt%.
- Stabilized EAFD with MPC: Pb, Hg & Se are below the maximum limits for nonhazardous waste landfills, when using MgO above 5 wt%
- Stabilized Pb-RFD with MOC or MPC: As, Cd, Hg, Pb, Sb & Se are below the maximum limits for non-hazardous waste landfills, when using MgO above 20 wt%.

This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Program "PAVET" – Project: Environmental applications of magnesia and utilization of produced by-products.

Thank you for your attention

Prof. A.I. Zouboulis, e-mail: zoubouli@chem.auth.gr