

5th International Conference on Sustainable Solid Waste Management, Athens, 21-24 June 2017

ATHENS2017

PHYSICO-CHEMICAL AND RADIOLOGICAL CHARACTERIZATION OF PHOSPHOGYPSUM FOR ITS VALORISATION IN CEMENT MORTAR

S.M. Pérez-Moreno, J. Rosales, M. Cabrera, F. Mosqueda, M.J. Gázquez, F. Agrela, J.P. Bolivar

Group of Radiations Physics and Environment (FRYMA) University of Huelva, Huelva, Spain.

INTRODUCTION PHOSPHOGYPSUM STACK: OVER 100 Mt - 1000 ha. $Ca_{10}(PO_4)_6F_2 + 10 H_2SO_4 \rightarrow 6 H_3PO_4 + 10 CaSO_4 \cdot 2H_2O + 2HF$ SPAIN HUELVA PHOSPHORIC ACID INDUSTRY TINTORWER June 20 2

INTRODUCTION

NORM (NATURALLY OCCURRING RADIOACTIVE MATERIAL)

 $Ca_{10}(PO_4)_6F_2 + 10 H_2SO_4 \rightarrow 6 H_3PO_4 + 10 CaSO_4 \cdot 2H_2O + 2HF$ (1.66 kg of PG per kg of treated P)

OBJECTIVES

- ► APPLICATION OF PHOSPHOGYPSUM IN CIVIL ENGINEERING
 - The main objective is to use the Phosphogypsum as Setting Retarders to replace the natural gypsum in Cement Mortar.
 - Physico-chemical and Radiological Characterization of Mortars and their Raw Materials, and their Environmental Implications

MATERIALS AND METHODS

RAW MATERIALS:

- ► PHOSPHOGYPSUM (PG)
- ► NATURAL GYPSUM (NG)
- CLINKER (CK)
- ► NORMALIZED SAND (S)

<u>CEMENT MORTARS:</u> Curing conditions: 20 °C,100% humidity

	C-OPC-M	PG-M	NG/PG-M
CK (wt%)	21	21	21
S (wt%)	67	67	67
NG (wt%)	1.1	-	0.55
PG (wt%)	-	1.1	0.55
W (wt%)	11	11	11
ADITIVE (wt%)	-	0.20	0.20

MATERIALS AND METHODS

CHARACTERIZATION METHODS:

- ► X RAY FLUORESCENCE (XRF)
- ► X RAY DIFFRACTION (XRD)
- ► ICP-MS/OES
- ► GRANULOMETRY ANALISYS
- ELECTRONIC MICROSCOPY (SEM-EDS)
- ► GAMMA SPECTROMETRY ANALYSIS
- ► LIXIVIATION TEST (UNE-EN 12457-4)

RESULTS: XRF

	RAW MATERIALS													
	AI (%)	Ca (%)	Cu (%)	F (%)	Fe (%)	K (%)	Mg (%)	Mn (%)	Ni (%)	P (%)	Pb (%)	S (%)	Si (%)	P.C. (%)
NG	1.43	15.7	ND	ND	1	0.9	2.2	0.03	ND	0.01	0.01	9.73	3.34	37.3
PG	80.0	22.5	ND	1.26).03	ND	ND	ND	ND	0.22	ND	16.7) .40	23.7
СК	1.49	49.3	0.05	ND	3.8	0.26	0.37	0.03	0.01	0.07	0.04	0.79	8.40	1.00
S	2.06	0.08	0.02	ND	0.5	1.26	0.2	ND	ND	0.02	0.01	0.01	42.7	1.34

						CEN	IENT	MOF	RTAR	S					
		Al	Са	Cu	F	Fe	K	Mg	Mn	Ni	Р	Pb	S	Si	P.C.
_		(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
	C-OPC	1.34	10.9	0.04	ND	1.60	0.56	0.24	0.02	0.02	0.06	0.02	0.81	30.3	6.37
	NG-M	2.74	11.6	0.06	ND	2.41	1.22	0.37	0.03	ND	0.06	0.03	0.64	30.2	10.4
	PG-M	1.23	10.7	0.03	ND	1.55	0.53	0.21	0.02	ND	0.06	0.02	1.04	29.9	6.69
	NG/PG-M	2.62	11.3	0.03	ND	2.32	1.05	0.37	0.04	ND	0.06	0.04	0.96	30.2	11.9

7

RESULTS: XRD (RAW MATERIALS)

	PG (%)	NG (%)
Gypsum (CaSO ₄ ·2H ₂ O)	98	92
Bassanite (CaSO ₄ ·1/2H ₂ O)	n.d	1.5
Anhydrite (CaSO ₄)	n.d	<1
Dolomite (CaMg(CO ₃) ₂	n.d	5.6
Magnetite (Fe ₂ O ₃)	n.d	<1
Chukhrovite (Ca ₄ AlSi(SO ₄)F ₁₃ ·12(H ₂ O))	<1	n.d
Quartz (SiO ₂)	<1	<1

CK (%)	
Alite (Ca ₃ SiO ₅) (C3S)	66
Larnite (Ca ₃ SiO ₄) (C2S)	9.3
Brownmillerite (AICa ₂ FeO ₅) (C2AF)	8.4
Al ₂ Ca ₄ Fe ₂ O ₁₀ (C4AF)	6.1
$AI_2Ca_3O_6$ (C3A)	3.1
Fayalite (Fe ₂ SiO ₄)	2.3
Portlandite (Ca(OH) ₂)	3.3
Lime (CaO)	1.7

	S (%)
Quartz (SiO ₂)	100

500µm

Electron Image 1

10

100µm WD12mm

 $\times 130$

JEOL COMP 15.0kV

RESULTS: SEM-EDS (RAW MATERIALS)

RESULTS: MORTARS

▶ MAIN REACTIONS DURING CURING OF MORTARS:

Tri- calcium silicates (C3S)

 $2(CaO)_{3}(SiO_{2}) + 7H_{2}O \rightarrow (CaO)_{3}(SiO_{2}) \cdot 4(H_{2}O) + 3Ca(OH)_{2}$ $AMORFOUS (C-S-H) \quad PORTLANDITE$

Di- calcium silicates (C2S)

$$2(CaO)_2(SiO_2) + 5H_2O \rightarrow (CaO)_3(SiO_2) \cdot 4(H_2O) + Ca(OH)_2$$

AMORFOUS (C-S-H) PORTLANDITE

Calcium aluminate (C3A) in presence of gypsum

 $(CaO)_{3}(AI_{2}O_{3}) + 3 CaSO_{4} \cdot 2(H_{2}O) + 26 H_{2}O \rightarrow (CaO)_{3}(AI_{2}O_{3})(CaSO_{4})_{3} \cdot 32(H_{2}O)$

Ettringite

RESULTS: XRD MORTARS

	C-OPC-M (%)	PG-M (%)	NG/PG-M (%)
Quartz (SiO ₂)	71.2	71.3	69.8
Portlandite (Ca(OH) ₂)	9.3	12.2	10.4
Ettringite (Ca ₆ Al ₂ (SO ₄) ₃ (OH) ₁₂ ·26(H ₂ O)	6.8	8.3	8.3
Brownmillerite (AICa ₂ FeO ₅) (C2AF)	3.2	2.7	2.8
Alite (Ca ₃ SiO ₅) (C3S)	3.7	2.7	2.4
Calcite (CaCO ₃)	5.8	2.6	6.3

RESULTS: SEM-EDS MORTARS

C3S: $(CaO)_{3}(SiO_{2})$ C2S: $(CaO)_{2}(SiO_{2})$ C2AF: $(CaO)_{2}(AI_{2}O_{3})(FeO)$

RESULTS: LIXIVIATION TEST MORTARS

R.D. 1481/2001 which regulates the disposal of waste by landfill.

				NO HAZARDOUS	HAZARDOUS
	C-OPC	PG-M	NG/PG-M	L/S = 10	L/S = 10
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Cr	0.15	0.04	0.05	0,5 - 10	10 - 70
Ni	<ld< th=""><th>0.02</th><th>0.01</th><th>0,4 - 10</th><th>10 - 40</th></ld<>	0.02	0.01	0,4 - 10	10 - 40
Cu	<ld< th=""><th><ld< th=""><th><ld< th=""><th>2 - 50</th><th>50 - 100</th></ld<></th></ld<></th></ld<>	<ld< th=""><th><ld< th=""><th>2 - 50</th><th>50 - 100</th></ld<></th></ld<>	<ld< th=""><th>2 - 50</th><th>50 - 100</th></ld<>	2 - 50	50 - 100
Zn	0.03	0.01	0.03	4 - 50	50 - 200
As	<ld< th=""><th>0.01</th><th><ld< th=""><th>0,5 - 2</th><th>2 - 25</th></ld<></th></ld<>	0.01	<ld< th=""><th>0,5 - 2</th><th>2 - 25</th></ld<>	0,5 - 2	2 - 25
Se	<ld< th=""><th><ld< th=""><th><ld< th=""><th>0,1 - 0,5</th><th>0,5 - 7</th></ld<></th></ld<></th></ld<>	<ld< th=""><th><ld< th=""><th>0,1 - 0,5</th><th>0,5 - 7</th></ld<></th></ld<>	<ld< th=""><th>0,1 - 0,5</th><th>0,5 - 7</th></ld<>	0,1 - 0,5	0,5 - 7
Мо	0.07	0.15	0.10	0,5 - 10	10 - 30
Cd	<ld< th=""><th>0.01</th><th><ld< th=""><th>0,04 - 1</th><th>1 - 5</th></ld<></th></ld<>	0.01	<ld< th=""><th>0,04 - 1</th><th>1 - 5</th></ld<>	0,04 - 1	1 - 5
Sb	0.0005	0.002	0.0005	0,06 - 0,7	0,7 - 5
Ва	6.4	0.63	0.38	20 - 100	100 - 300
Hg	<ld< th=""><th><ld< th=""><th><ld< th=""><th>0,01 - 0,2</th><th>0,2 - 2</th></ld<></th></ld<></th></ld<>	<ld< th=""><th><ld< th=""><th>0,01 - 0,2</th><th>0,2 - 2</th></ld<></th></ld<>	<ld< th=""><th>0,01 - 0,2</th><th>0,2 - 2</th></ld<>	0,01 - 0,2	0,2 - 2
Pb	0.12	<ld< th=""><th>0.06</th><th>0,5 - 10</th><th>50</th></ld<>	0.06	0,5 - 10	50

LIXIVIATION TEST ACCORDING TO UNE-EN 12457-4.

RESULTS: MORTARS

European Union Regulation: Radiation protection 112

	C-OPC	PG-M	NG/PG-M
	Bq/kg	Bq/kg	Bq/kg
²³⁴ Th	7.9±4.1	10.0±4.4	10.7±4.4
²²⁶ Ra	7.2±0.8	13.3±0.8	14.3±1.0
²¹⁰ Pb	12.2±3.9	29.7±4.6	13.3±5.0
²²⁸ Ra	6.6±1.4	8.8±1.3	17.3±1.9
²²⁸ Th	6.6±1.2	6.7±1.0	12.2±1.6
⁴⁰ K	104±7	123±7	155±11
INDEX I	0.12	0.14	0.13

I=(²²⁶Ra/300)+(²²⁸Ra/200)+(⁴⁰K/3000) < 1 (materials used in bulk amounts, e.g. concrete)

FINALS REMARKS

- This study was carry out to use the phosphogypsum as setting retarders to replace the natural gypsum in cement mortar.
- Physico-chemical and Radiological Characterization of mortars and their raw materials have been performed.
- Several mortars have been manufactured by according to regulations of building materials.
- The composition and mineral phases of mortar cement manufactured of PG are the expected and similar that were found in the control mortar.
- Lixiviation test and radiological risk index reveal that the mortars do not involve radiological either environmental risks.

ACCORDING TO THE RESULTS THERE ARE NOT SIGNIFICANT DIFFERENCES BETWEEN MANUFACTURED MORTARS WITH NG AND PG

5th International Conference on Sustainable Solid Waste Management, Athens, 21-24 June 2017

18

ATHENS2017

THANK YOU FOR YOUR ATTENTION

S.M. Pérez-Moreno, J. Rosales, M. Cabrera, F. Mosqueda, M.J. Gázquez, F. Agrela, J.P. Bolivar

silvia.perez@dci.uhu.es

Group of Radiations Physics and Environment (FRYMA) University of Huelva, Huelva, Spain.