

Chemical stabilization

of municipal solid waste incineration (MSWI) fly ash

C. Vavva, E. Voutsas, K. Magoulas

NATIONAL TECHNICAL UNIVERSITY OF ATHENS SCHOOL OF CHEMICAL ENGINEERING Thermodynamics and Transport Phenomena Laboratory

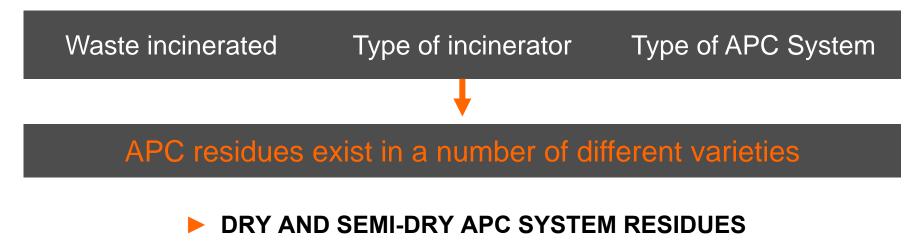
5th International Conference on Sustainable Solid Waste Management, ATHENS2017 Athens, 21–24 June 2017

Introduction

- MSW Incineration Residues Fly ash
- The problem
- Management
- Treatment Techniques

Our Research on Fly Ash Treatment

- Treatment techniques:
 - Water extraction
 - Chemical stabilization
- Description of lab scale experiments
- Results


Introduction: MSWI Residues

Mass flows in a MSW incinerator in grate technology (values in kg)

WTE Residues	% by mass of the original waste
Bottom ash:	15-25%
Heat Recovery System ash:	0.5%
Fly ash:	1-2.5%
Air Pollution Control (APC) residues:	2-5%

APC Residues

The characteristics of APC residues depend mainly on

WET APC SYSTEM RESIDUES

European Waste Catalogue and Hazardous Waste List APC residues: Hazardous Waste 19 01 07*

The problem with APC residues

The primary environmental concern related to APC residues is the potential for leaching of salts and heavy metals when landfilled

Management of APC Residues

Typically, APC residues are disposed of on special disposal sites

A large number of combinations of treatment, stabilization, utilization, and landfilling processes exists on an international level

- Overall, three main routes for APC residues exist:
 - Landfilling

(Surface disposal, Subsurface disposal –UK, Germany)

• Material recovery

(Metals, salts, HCI and gypsum)

• Utilization as aggregates

(Cement based applications, Asphalt, Neutralization capacity)

In Europe, either of these options include some degree of treatment and/or stabilization

Treatment techniques

Extraction and separation:

Extraction and removal of specific components from the residues

Chemical stabilization:

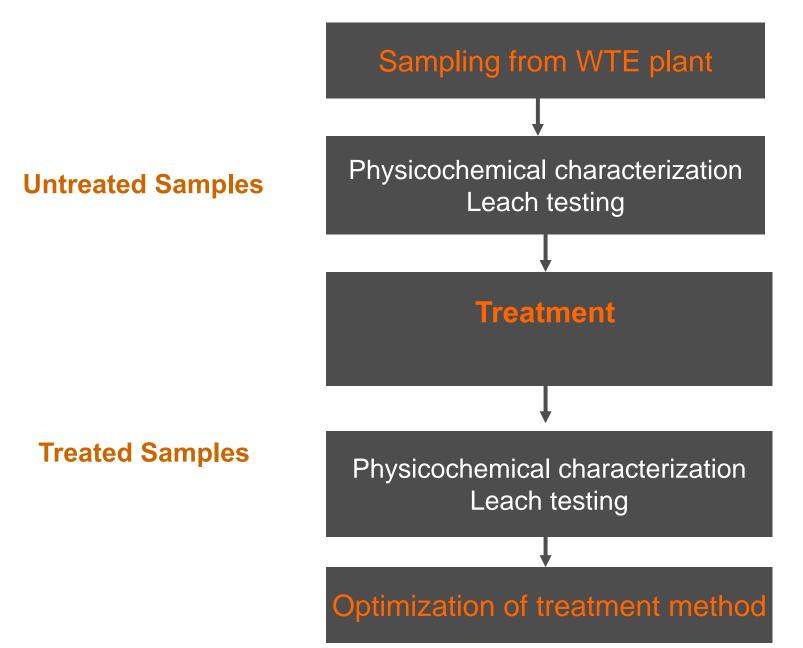
Binding and immobilization of contaminants by chemical reactions

Solidification:

Physical binding and encapsulation of residues, and in some cases also chemical stabilization

Thermal treatment:

Heating of the residues - changes of the physical and chemical characteristics (vitrification, melting, sintering)


Estimated costs of treatment techniques

Process	Estimated cost per ton of residue, €
Cement solidification	25-50
FeSO ₄ stabilization	65
CO ₂ stabilization	80
PO ₄ stabilization	25
Acid extraction + thermal integration	100 - 200
Vitrification	100-500
Melting	100-500

(source: ISWA data)

Our research on APC residues

Our research on APC residues: Overview

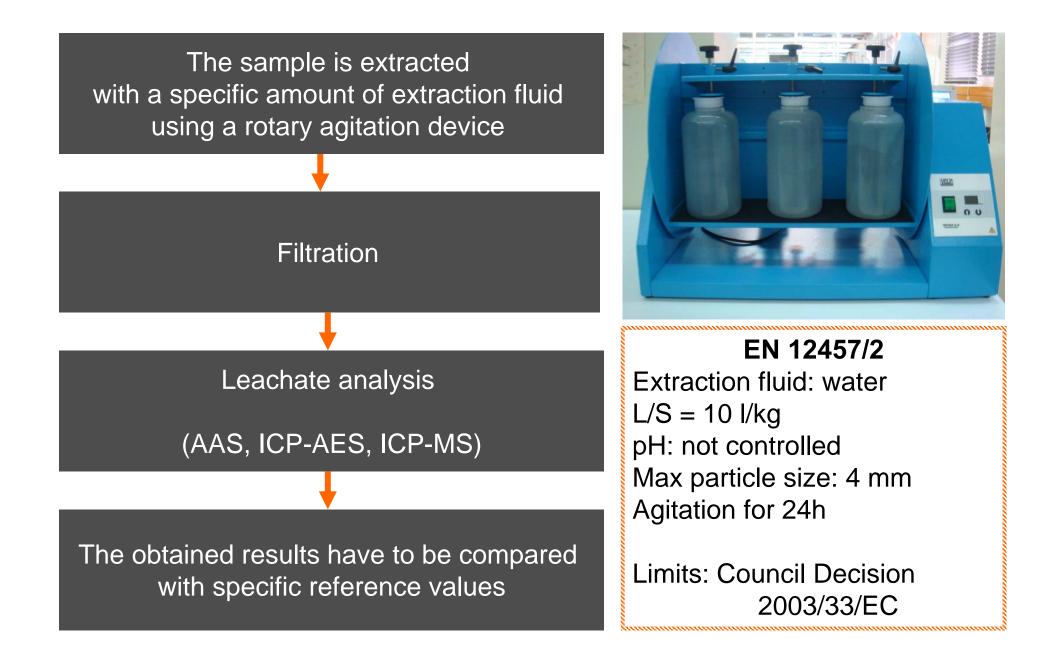
Our research: Treatment techniques

Phosphate stabilization

Phosphate is a very promising stabilization agent used in the areas of soil restoration, wastewater treatment and fly ash disposal

The addition of phosphate to ash reduces the leaching of lead and other metals by converting soluble compounds into more stable and insoluble mineral phases metals leaching is reduced

Water Washing


Water washing can remove an important amount of salts from the residues

The wastewater produced has to be properly managed toxic metals are also removed

Difficult comparison between methods results

- Various leaching tests are used
- Different limits between countries
- Only selected metals measured

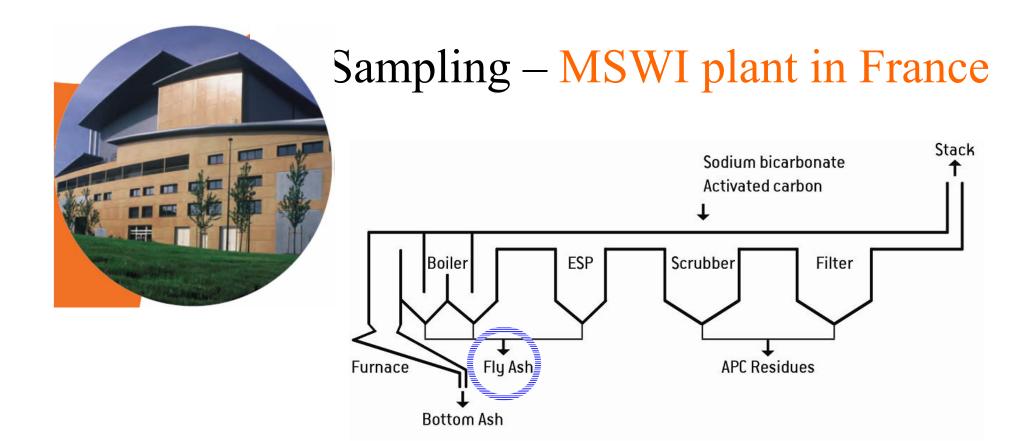
Our research: Batch Leaching test

Novelty of our research

Phosphate Stabilization: chemical stabilization of metals

Water Extraction: salts removal

Study the effect of:

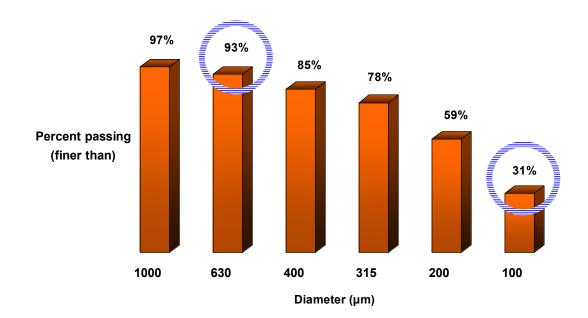

- Type of residue
- Phosphate to residue ratio
- Liquid to solid ratio (use of process mixing water)
- Mixing process (time, speed)
- ▶ pH
- Sequence of mixing
- Different sources of soluble PO₄³⁻ (H₃PO₄, Na₂HPO₄ etc.)

Optimization of the process

Leaching properties of treated ash (analysis of all metals – 2003/33/EC)

Properties of Wastewater

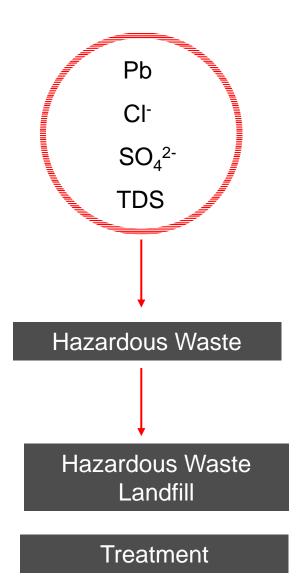
RESULTS


Operational conditions from the incinerator plant

Process:	Incineration by grate furnaces with energy recovery
Nominal capacity:	172 500 tonnes/year 2 furnaces handling 10.8 tonnes/hour
Flue Gas Cleaning:	DRY+ESP+FF
Energy Produced:	Electricity: 80.000 MWh Steam: 10.000 tonnes

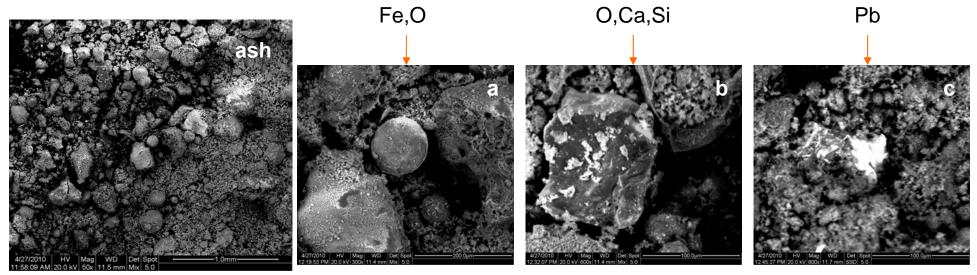
Physicochemical Characterization

Moisture	0.3 %
Density	2.5 g/cm ³
рН	12.0
Specific surface area	1.897 m ² /g
Pore volume	0.005 cm ³ /g
Median pore diameter	105.430 Å

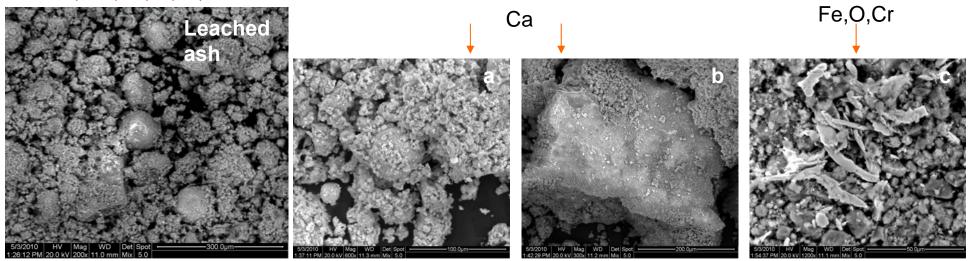


Composition (XRF Analysis)

	w/w %		ppm
CaO	29.2	Cr_2O_3	880
SiO ₂	15.3	MnO	843
SO ₃	10.2	SrO	530
Na ₂ O	9.6	SnO ₂	490
Al ₂ O ₃	7.5	SbO ₃	397
K ₂ O	4.5	ZrO ₂	213
Fe ₂ O ₃	3.1	NiO	180
ZnO	2.0	Rb ₂ O	67
TiO ₂	1.9		
MgO	1.7		
P ₂ O ₅	1.7		
PbO	0.5		
BaO	0.2		
CuO	0.2		
LOI (%)	10.01		

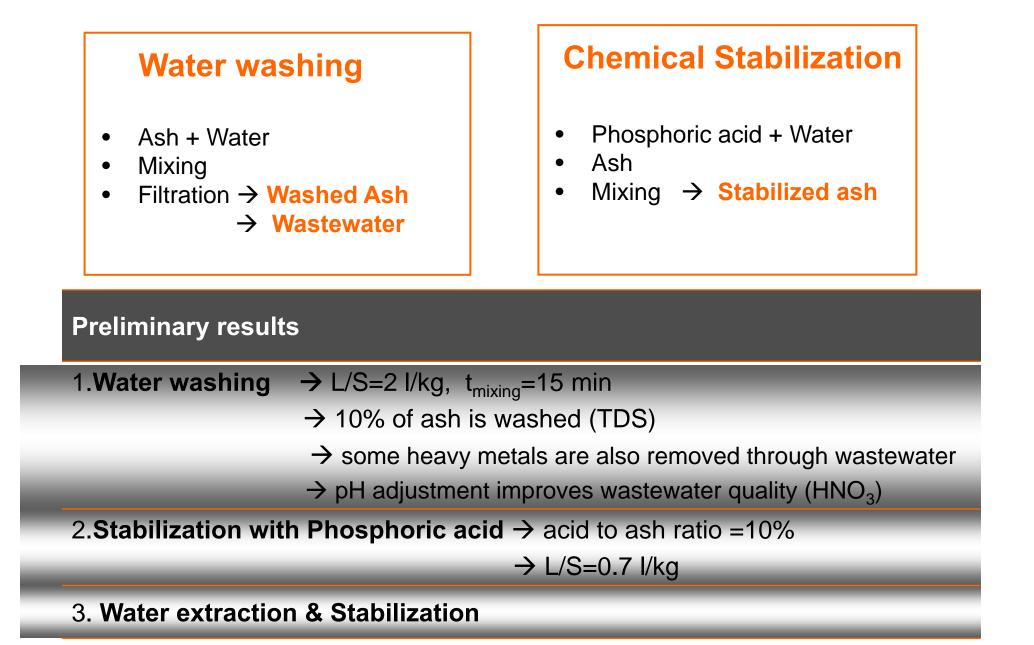

RAW ASH: Leaching test EN 12457/2

	Measured valu	e l	_egal Limits
рН	11.94		>6
TDS (mg/kg)	145404		60000
Element (mg/l)			
As	<0.02		0.2
Ва	0.48		10
Cd	0.01		0.1
Cr	0.41		1
Cu	0.01		5
Hg	<0.01		0.02
Мо	0.50		1
Ni	<0.01		1
Pb	34.2		1
Sb	<0.02		0.07
Se	<0.02		0.05
Zn	0.99		5
CI	6212		1500
F [.]	0,69		15
SO ₄ -	3060		2000



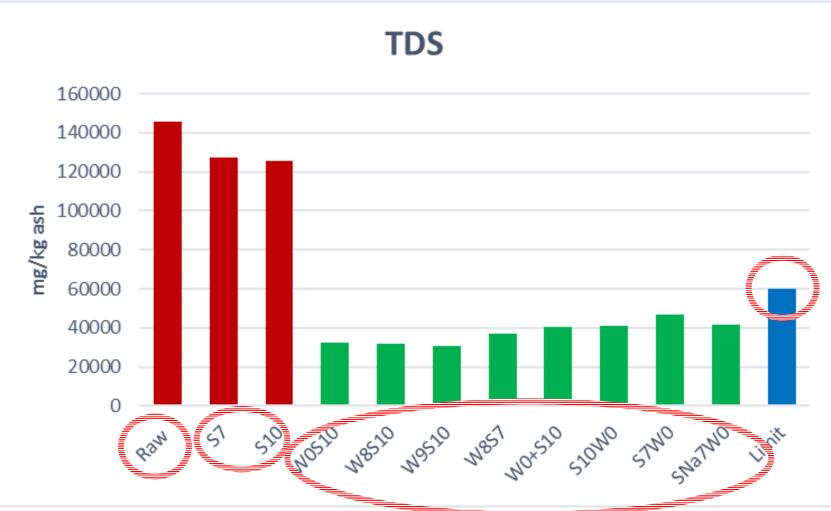
SEM Analysis

O, C, Ca, Cl, Si, Na, K, S, Zn, Fe

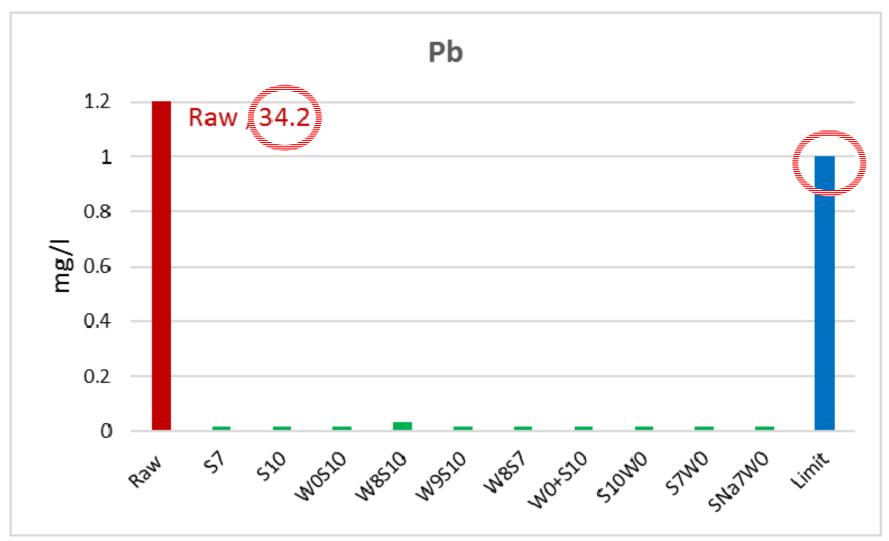


O, Ca, Si, S, C, Zn

TREATMENT


Treatment of fly ash (laboratory scale)

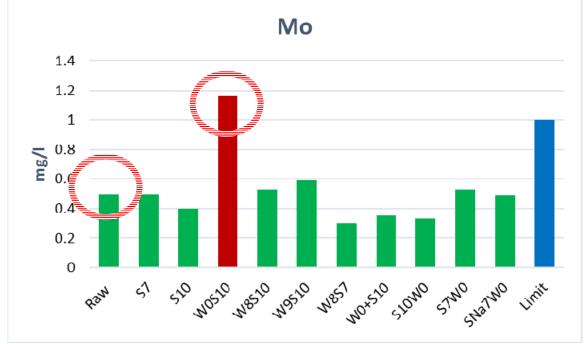
Washing & Stabilization: Treatment Methods

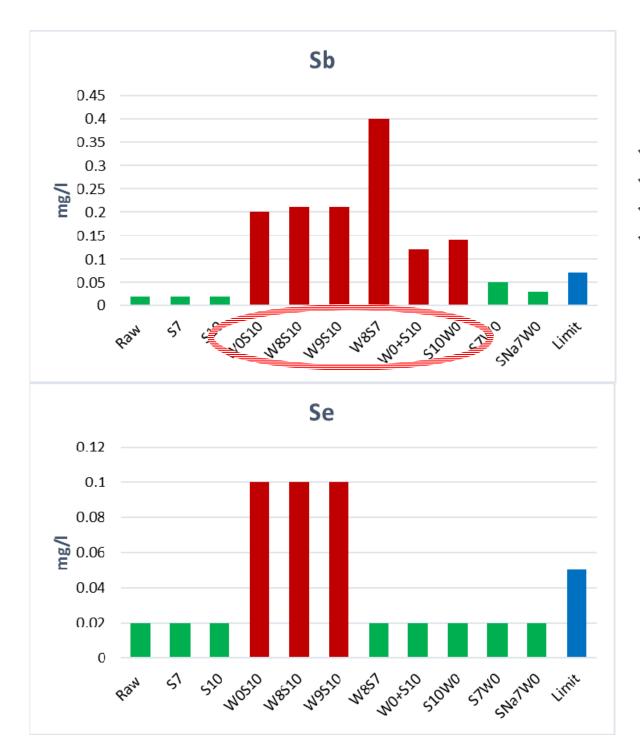

	Symbol	Treatment Method description	Parameters	
	S _x	Phosphoric Acid Stabilization	S ₇ , S ₁₀	
-	_	x: Phosphoric acid /ash ratio (w/w)		
	Wy	Water Washing	W ₀ , W ₈ , W ₉	
-	_	y: ml HNO ₃		
	W _y S _x	Washing followed by	$W_0S_{10}, W_8S_{10}, W_9S_{10}, W_8S_7$	
-		Stabilization		
	W _y +S _x	Simultaneous Washing	W ₀ +S ₁₀	
	_	and Stabilization		
	S _x W _y	Stabilization	S ₇ W ₀ , S ₁₀ W ₀	
-		followed by Washing		
	S _{Nax} W _y	NaH ₂ PO ₄ .2H ₂ O Stabilization	S _{Na7} W ₀	
		followed by Washing		

Leaching Results

- Raw ash: TDS concentration is twice the limit
- Stabilization process: slightly reduces TDS but not enough
- Washing process combined with stabilization: successfully reduces TDS for all methods

Leaching Results


- All methods highly reduce Pb leaching
- Over a wide range of pH between methods examined (pH: 7.3–10.8)



Leaching Results

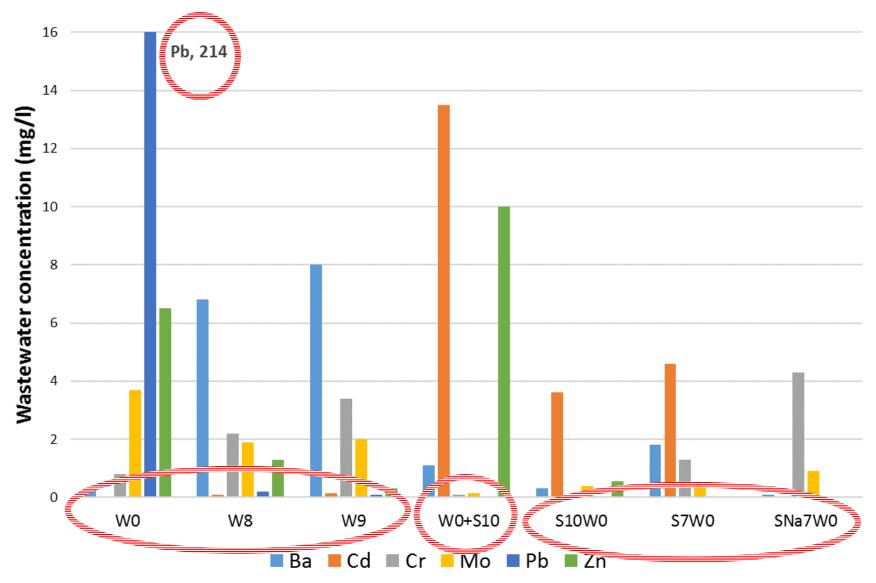
Cr and Mo showed low concentration for raw ash

but they were mobilized after the treatment with some methods

Sb:

✓ Problematic mobilization

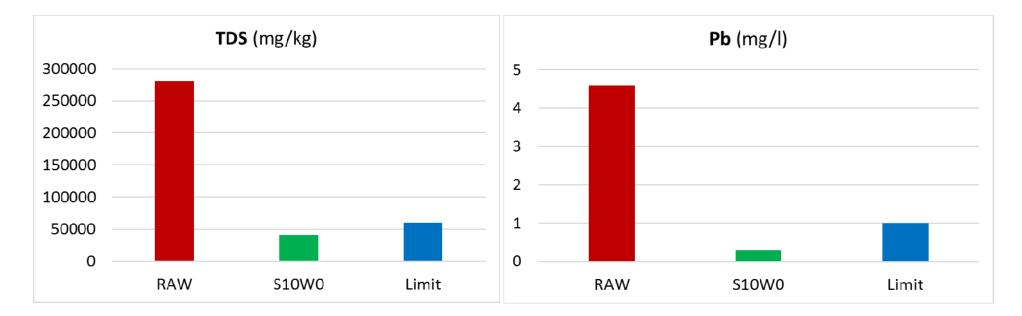
✓ Usually is not measured


- \checkmark No limit value for other tests
- ✓ Low limit for EN 12457 test

Leaching results for all treatment methods: Overview

- Water washing, with and without pH adjustment, followed by phosphoric acid stabilization failed to stabilize the fly ash → metals mobilization.
- Simultaneous washing and phosphoric acid stabilization reduces concentrations of all metals in the leachate, except from Sb that exceeds the legal limit.
- A successful combination was found by a simple change in the sequence of the two techniques: phosphoric acid stabilization followed by water washing, using an optimum acid to ash ratio of 7 % w/w.
- Finally, regarding Cr leaching, the use of sodium dihydrogen phosphate dehydrate gives worse results than phosphoric acid.

Wastewater Results



The successful method produces also a cleaner wastewater.

Medical Waste Incineration Fly Ash: Treatment Method results

- > Finally, we used this method for the stabilization of another type of fly ash
- Sampling: Medical Waste incinerator in Athens
- Similar properties with MSWI fly ash (finer, higher amount of Ca)
- \succ Leaching test: TDS and Pb exceed the limits as well \rightarrow hazardous waste

Method application \rightarrow Successful stabilization \rightarrow Non-hazardous waste

Conclusions

• APC Residues management \rightarrow Open issue for incineration plants

 \rightarrow Various treatment techniques and management practices

- Fly Ash \rightarrow Hazardous Waste (leaching of Pb and salts)
- Water extraction \rightarrow Effectively removes salts

 \rightarrow Wastewater properties – heavy metals – pH effect

- Phosphoric acid Stabilization \rightarrow Reduces the leaching of Pb and other metals \rightarrow Low cost, relatively simple technique
- Washing & Stabilization → Very complicated balance between fly ash

successful stabilization and wastewater quality

- \rightarrow Strongly affected by pH and many parameters
- → Water washing followed by phosphoric acid stabilization failed to stabilize the fly ash
- \rightarrow Metals mobilization
- → Successful stabilization & cleaner wastewater: phosphoric acid stabilization followed by washing

"Waste is better utilized through incineration than through landfills but recycling is an even better option.

Of course, the best option is **prevention** of waste production altogether,

which often requires **direct reuse**.

The less waste, the better - it's as simple as that."

"Copenhagen Waste Solution, City of Copenhagen (2008)

