

Synthesis and Characterization of Glass-ceramics From Magnetic Separation Tailings of Ferrochromium Slag

Mei Zhang, Zhitao Bai, Min Guo, Fuming Wang

5th International Conference on Sustainable Solid Waste Management 21–24 June 2017

_NS2017 zhangmei@ustb.edu.cn

OUTLINE

- 1. Background
- 2. Experiment
- 3. Results and Discussions
- 4. Summary

Part 1

Background

High carbon ferrochromium slag (HCFS) is a by-product from the production of ferrochromium. Producing one ton of high carbon ferrochromium can generate 1.3-1.7 tons ferrochromium slag.

Production of high carbon ferrochrome

High carbon ferrochrome slag

Present situation

New conception

Part 2

Experiment

2 Experiment | Materials

2 Experiment | Materials

After the magnetic separation, the tailing were obtained using as raw materials.

Chemical characterization of raw materials (wt %).

Raw Materials	SiO ₂	MgO	Al ₂ O ₃	CaO	Na ₂ O	Cr ₂ O ₃	Fe ₂ O ₃	K ₂ O	CaF ₂
Tailing	31.89	33.61	24.5	1.99		5.15		0.11	
WG	75.68	3.40	0.94	8.95	9.73	0.024	0.27	0.68	

Experiment | Materials

- □ Waste glass (WG) was selected for the composition adjustment,
- □ limestone and soda (\leq 75µm) were used as the fining agent,
- □ fluorite (\leq 75µm) was added as the flux.

Compositions of the samples (mass/g).

Sample NO.	Tailing	Waste glass (WG)	CaCO ₃	Na ₂ CO ₃	CaF ₂ (extra addition)	Mass ratio of tailing and WG, R(T/W)
1#	30.0	50.0	15.0	5.0	5.26	0.60
2#	35.0	45.0	15.0	5.0	5.26	0.78
3#	40.0	40.0	15.0	5.0	5.26	1.00
4#	45.0	35.0	15.0	5.0	5.26	1.29
5#	50.0	30.0	15.0	5.0	5.26	1.67

2 Experiment | Method

Experimental procedures

Part 3

Results and Discussions

- **◆TG-DSC Analysis**
- **◆**Phase characterization
- **♦** Microstructure analysis
- **◆**Leaching performance

3 Results and Discussion

TG-DSC Analysis

The nucleation temperatures (Tn) and crystallization temperatures (Tg) were detected using Differential Scanning **Calorimetry** (DSC, NETZSCH-STA409).

The DSC curves of samples

Nucleation and crystallization temperature of the samples.

R(T/W)	0.60	0.78	1.00	1.29	1.67
Nucleation temperature/°C	640	648	652	656	663
Crystallization temperature/°C	865	868	873	878	882

B Results and Discussion

XRD Analysis

The photo of the samples and the corresponding XRD

□ Main phases of the glass-ceramics were diopside (CaMg(SiO₃)₂), nepheline ((Na,K)AlSiO₄), pyroxene (Ca(Mg,Fe)Si₂O₆, and Ca(Mg,Al,Fe)(Al,Si)₂O₆), respectively.

B Results and Discussion

Microstructure

- ☐ Gray: nepheline
- **□** White: diopside

The microstructures of the samples.

EDS analysis of the samples.

Point NO.		Element norm. C (wt %)									
		0	Mg	Al	Ca	Na	Cr	Fe	Si		
1	Gray	38.76	4.04	14.93	3.43	19.07			19.97		
2		39.31	4.38	16.35	2.08	19.54			18.24		
3		37.42	4.67	14.74	4.38	18.14			18.56		
4	White	36.53	11.54	4.83	21.90	1.90	0.80	1.26	22.20		
5		38.40	11.10	4.67	21.03	2.15	0.75	1.14	23.26		
6		38.35	11.30	4.45	21.70	1.19	0.61	1.27	24.63		

3 Results and Discussion

Mechanical properties

The micro-hardness results of the samples.

- □ R(T/W)个, Microhardness ↑ ↓.
- \square R(T/W)=1.00, MAX=9188MPa, higher than other glassceramics made from metallurgical slags whose microhardness are about 7000MPa.

B Results and Discussion

Mechanical properties

The bending test results of the samples.

- \square R(T/W) \uparrow , bending strength $\uparrow \downarrow$.
- \square R(T/W)=1.29, MAX=112MPa.

3 Results and Discussion

Leaching test

The leaching performance of the glass-ceramics was tested by the toxicity characteristic leaching procedure (TCLP) developed by the U.S. Environmental **Protection Agency (EPA).**

The leaching test results of the samples.

- When R(H/W)=1.67, MAX=0.257 mg/L.
- lower than far the international standard of toxic emission of chromium (5.0mg/L).
- glass-ceramics are environmental friend.

Part 4 Summary

4 Summary

- □ Glass-ceramics have been prepared from the magnetic separation tailings of high ferrochromium slag.
- \square With the increase in R(T/W), the nucleation and crystallization temperature increases.
- The microhardness and bending strength increase with the increase in R(T/W), whereas when the value of R(T/W) beyond 1.29, the bending strength begins to decrease.
- ☐ The optimal bending strength and microhardness of HCFT-based glass-ceramics are 112 MPa and 9188 MPa, respectively.
- □ The maximum leaching concentration of total chromium ions is 0.257 mg/L, which is far lower than the international standard of toxic emission of chromium.
- ➤ The utilization of high-carbon ferrochromium slag developed in this work not only has important theoretical and practical significance considering from energy saving, emission reduction and environmental protection, but also provides a new idea for the clean utilization of other heavy toxic metallurgical slags.

Thanks Fur Your Ittestions!

WCE-1952-AND