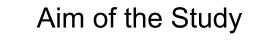


DIRECT LIQUID-LIQUID LIPID EXTRACTION METHOD FOR BIODIESEL PRODUCTION FROM SEWAGE AND PETROCHEMICAL INDUSTRY SLUDGES

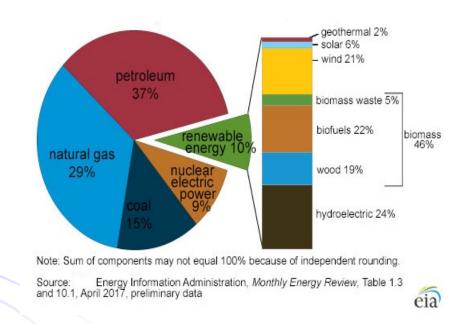

Elif Babayiğit Dilek Atik Prof. Dr. Ayşen Erdinçler

Boğaziçi University Institute of Environmental Sciences İstanbul, Turkey

Outline

 \bigcirc

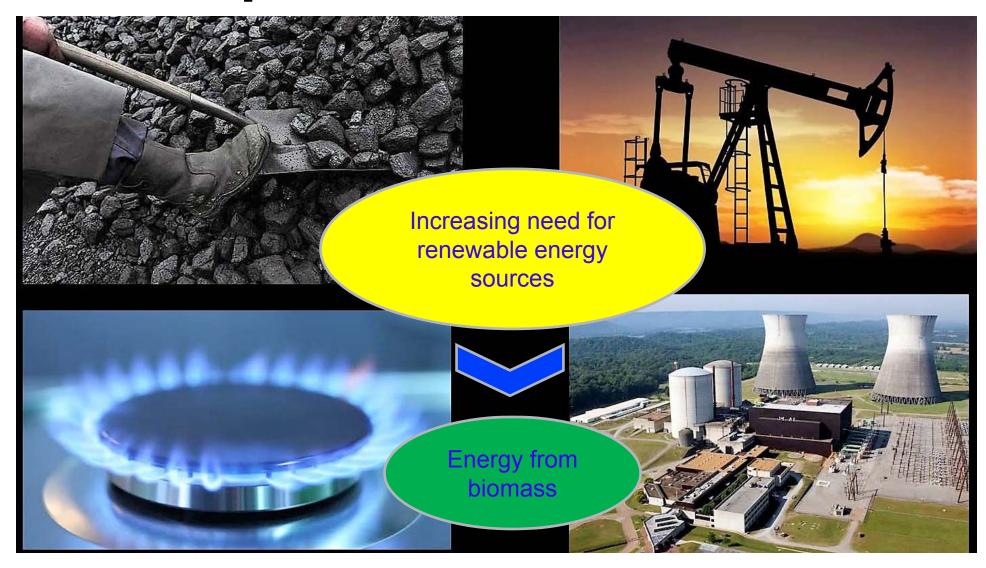
Methodology


Material and Methods

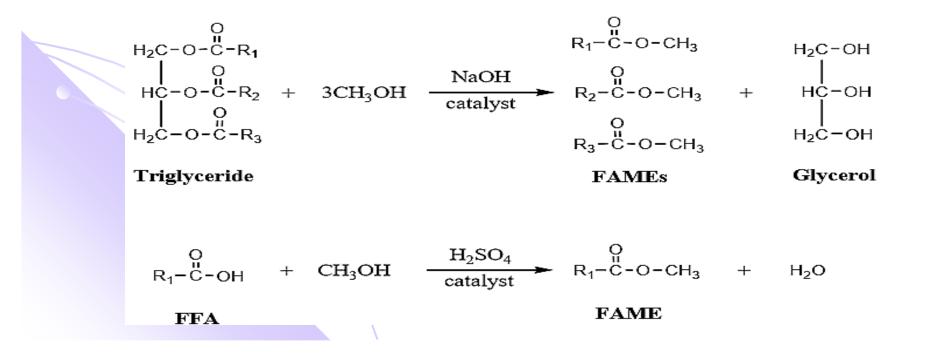
Results and Conclusions

Aim of this Study

- to explore lipid extraction from sewage and petrochemical industry WWTP sludges by using the novel direct liquid-liquid extraction method, which does not require expensive sludge dewatering/drying steps;
- to compare liquid-liquid method to standard reference drying method in terms of lipid and biodiesel yields
- to investigate the effect of acid pre-treatment on lipid yields


World's Energy Scenario

According to the International Energy Agency, the world will need 37% more energy in 2040 than today.


As shown in figure, currently 81% of all energy consumed worldwide is from fossil fuel sources.

The fossil fuel sources will be depleted in near future.

What is Biodiesel?

- Biodiesel is an alternative fuel that may be derived from a variety of feedstock.
- Commonly produced by transesterification of preextracted oils with an alcohol in the presence of a catalyst to generate the fatty acid methyl esters (FAMEs).

Benefits of Biodiesel

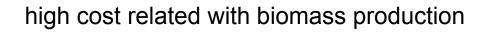
Biodiesel;

o is renewable
o is biodegradable
o is non-toxic
o is safe for storage and handling
o increases lubricity of fuel
o reduces global warming gases
o has lower emission profiles

Biodiesel Feedstocks

- ✓ Edible plant oils
 - rapeseed oil
 - sunflower oil
 - palm oil
 - soybean oil
 - coconut oil

 $\rangle\rangle$


 \sum

- ✓ Non-edible plant oils
 - jatropha
 - castor
 - neem
 - karanja
- ✓ Animal fats
- ✓ Waste cooking oil
- ✓ Microalgae
- ✓ Wastewater Sludge

high cost of pure vegetable or seed oils, 70-85% of the overall biodiesel production cost

excessive cultivation \longrightarrow deforestation and destruction of the ecosystem

low quality \longrightarrow the biodiesel consistency

Sludge as a Lipid Feedstock

- Municipal Wastewater (sewage) sludge is readily available in large quantities
- Wastewater sludge is cheap or practically costless feedstock generated in WWTPs, therefore the cost of biomass production and land requirement is eliminated.
- Wastewater sludge is non-edible lipid feedstock, therefore the competition with the food market is eliminated.

MATERIALS AND METHODS

Feedstocks:

- Municipal WWTP Sludge
 - Primary Sludge : from the bottom of the primary clarifier in a WWTP in İstanbul
 - Secondary Sludge : from the bottom of the secondary clarifier in a WWTP in İstanbul
- Petrochemical Industry WWTP Sludge
 - From the sludge thickening unit of a petrochemical industry WWTP in Turkey

Municipal Sewage Sludge up to 30 wt.% of lipids

Primary sludge;

- is a combination of floating grease and solids
- contains high lipid content originated from the adsorption of lipids, in the form of triglycerides, diglycerides, monoglycerides, phospholipids, and free fatty acids (FFAs)

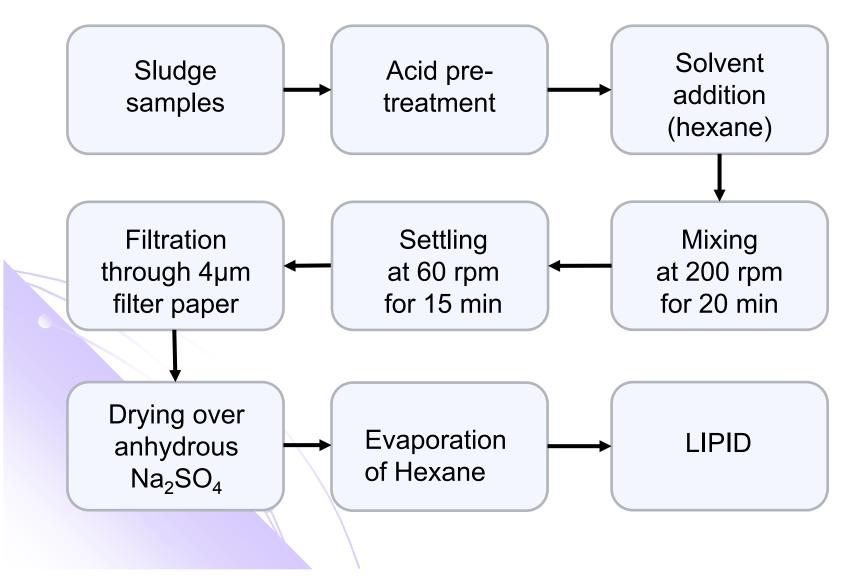
Secondary sludge;

is composed of microorganisms whose cell membranes contain phospholipids

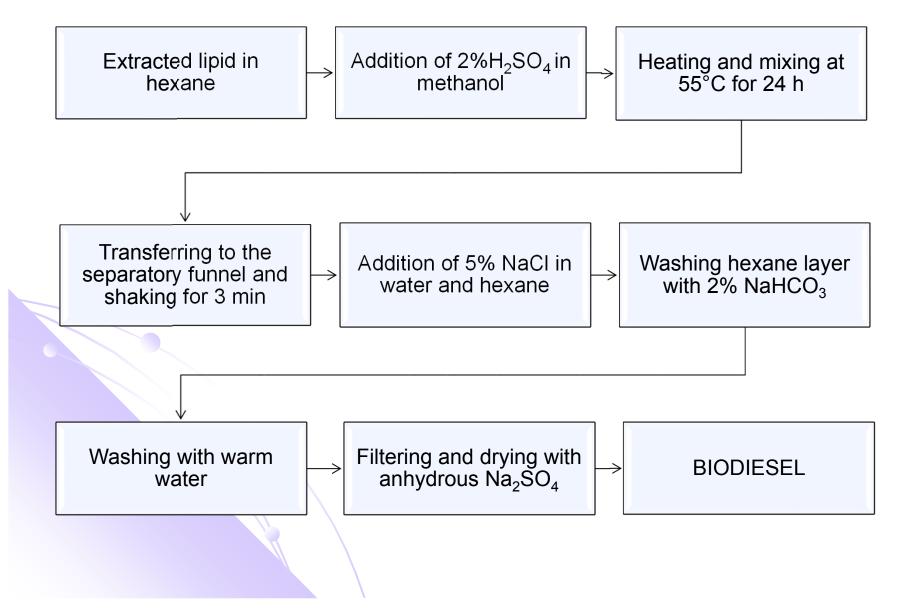
Petrochemical Industry WWTP Sludge up to 40-60 wt.% of lipids

- contains sludges from:
 - oil separators,
 - primary clarifier
 - secondary clarifier (waste activated sludge)
 - comprises of various organic and inorganic compounds: suspended solids, salts, water-soluble metals phospholipids,
 - petroleum hydrocarbons (PHCs),
 - neutral lipids and FFAs (sourced from waste activated sludge and the oils that cannot be removed in WWTP)

Scheme of biodiesel production process


Direct liquid-liquid lipid extraction method

Standard Drying Lipid Extraction Method


Sludge_samples Acid pre-treatment (HCI) Drying_with MgSO₄.H₂O Solvent addition (hexane) Soxhlet extraction LIPID

Direct Liquid-Liquid Lipid Extraction Extraction Method

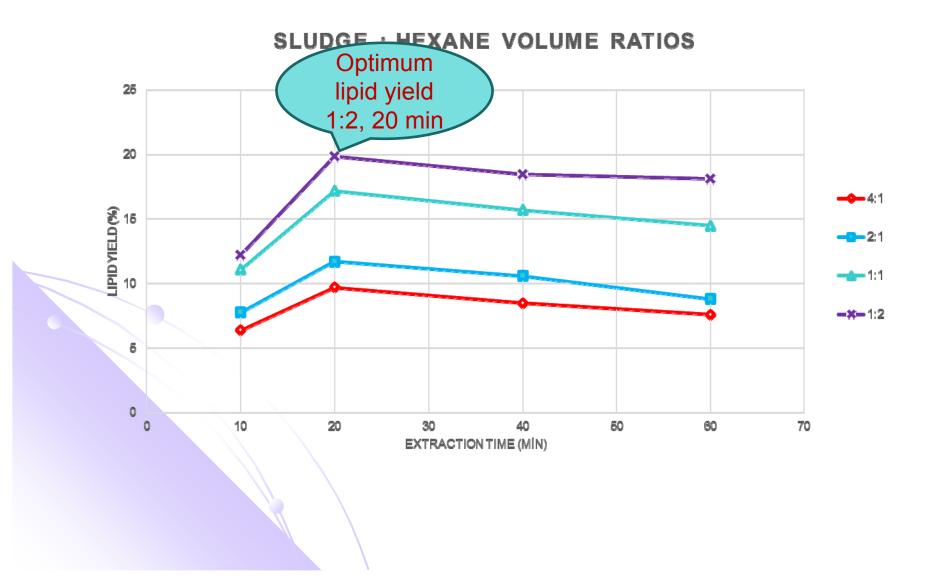
Biodiesel Production

RESULTS AND DISCUSSION

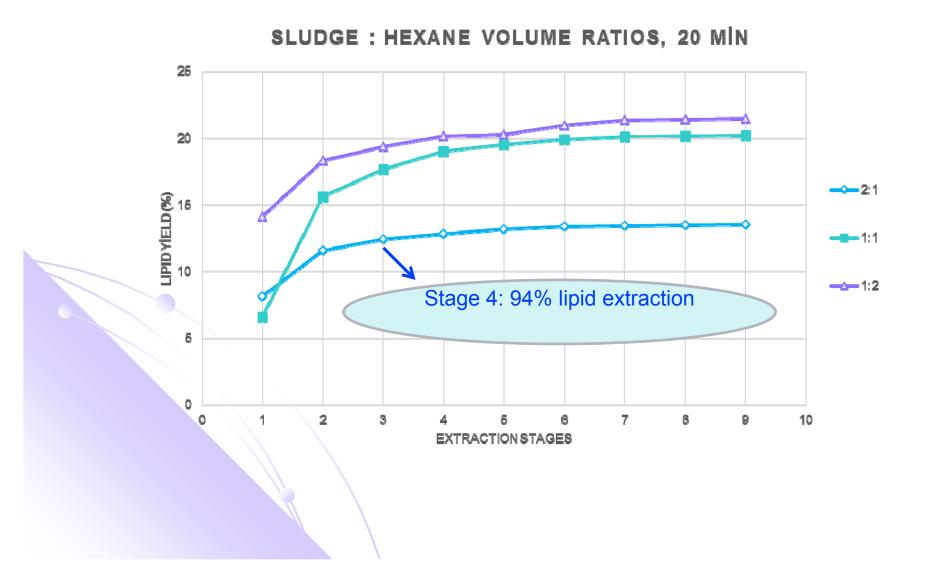
Sludge Characteristics

Parameter	Unit	Primary Sewage Sludge	Secondary Sewage Sludge	Petrochemical Industry WWTP sludge
TS	%	4.2	1.3	3.4
VS	%	2.4	0.78	2.07
COD	mg/L	40280	8780	63220
sCOD	mg/L	3090	2240	10800
рН	-	6.2	6.1	6.8
Viscosity	mPa.s	8	6.4	29.2

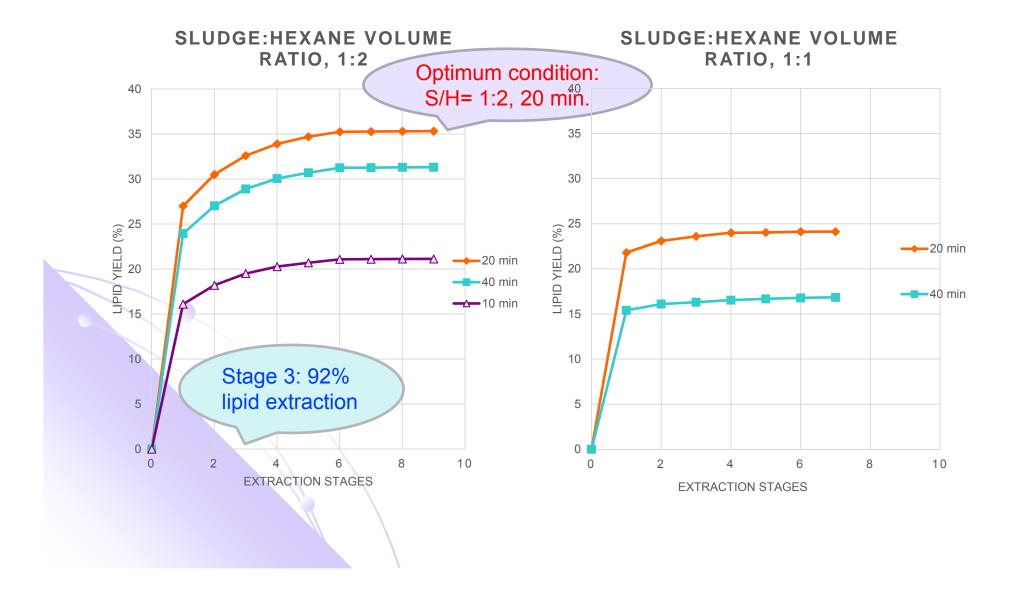
Effect of Solvent Type


		LIPID YIELD (%)				
		Liquid-Liqu	uid Method	Drying Method		
	SOLVENT	Primary sewage sludge	Secondary sewage sludge	Primary sewage sludge	Secondary sewage sludge	
	Hexane	19.4	2.7	24.0	7.2	
	Petroleum ether	13.4	2.3	23.8	11.9	
	Chloroform	12.3	1.3	23.1	10.0	
	Toluene	11.3	1.3	22.9	10.3	

Efficiency of Feedstocks


		Lipid yield (%) ^(a)	
Sludge type	Extraction method (Sludge:Hexane = 1:2)	Acidified	Non- acidified
Primary Sewage Sludge	Standard drying ^(b)	24	22.8
	Direct liquid-liquid extraction	19.7	10.5
Secondary Sewage Sludge	Standard drying ^(b)	7.2	6.5
	Direct liquid-liquid extraction	2.9	1.6
Petrochemical Industry WWTP Sludge	Standard drying ^(b)	20.3	18.2
	Direct liquid-liquid extraction	31.2	27.3
(a) Each value is the average of at least 3 samples collected on different days.			

^(b) Extraction according to standard MgSO₄.H₂O method, lipid yield on the basis of dry sludge.


Optimization of the Liquid-Liquid Lipid Extraction Method for Primary Sludge

Optimization of the Liquid-Liquid Lipid Extraction Method for Primary Sludge

Optimization of the Liquid-Liquid Lipid Extraction Method for Petrochemical Industry WWTP Sludge

Biodiesel Production Yields

	Sludge type	Extraction method	Yield (%) ^(a)	Non Pretreated.	Acid Pretreated
	Primary sewage sludge	Standard drying ^(b)	Lipid	22.8	24.0
			Biodiesel	10 F 180% incre	14.5
		Direct liquid-liquid extraction	Lipid	pretreat	
			Biodiesel	5.3	14.7
	Petrochemical Industry WWTP sludge	Standard drying ^(b)	Lipid	18.2	20.3
			Bi 57% in		14.1
		Direct liquid-liquid extraction	liquid- extra	liquid	31.2
			Biodieser	18.8	22.2
	^(a) All transesterification experiments were performed at least twice. ^(b) Extraction according to standard MgSO ₄ .H ₂ O method, lipid yield on the basis of dry sludge.				

CONCLUSIONS

Oily sludges from petrochemical industry WWTPs and primary sludges are <u>lipid-rich</u> feedstocks for biodiesel production.

> Secondary sewage sludge samples were found to be an <u>inefficient</u> to be used as lipid feedstock for biodiesel production.

- Direct liquid-liquid lipid extraction method resulted with higher lipid and biodiesel yields for *petrochemical industry WWTP sludge* samples than that of obtained by standard drying method.
- Almost the same biodiesel yields were achieved for primary sewage sludge by both of the extraction methods.
- Taking into consideration economy of the process, liquidliquid lipid extraction method may be preferred as it eliminates dewatering/drying steps, contributing to 50% of the whole biodiesel production cost.

CONCLUSIONS

Acidification pre-treatment increased the lipid and biodiesel yields.

 Biodiesel production from sludge is an alternative reuse/disposal method, decreasing the amount of WWTP sludges, requiring high treatment and handling costs.

Prof. Dr. Ayşen Erdinçler

Bogazici University Institute of Environmental Sciences Istanbul, Turkey Tel: +90 212 359 72 55 Fax: +90 212 257 50 33 erdincle@boun.edu.tr

THANK YOU 🙂

