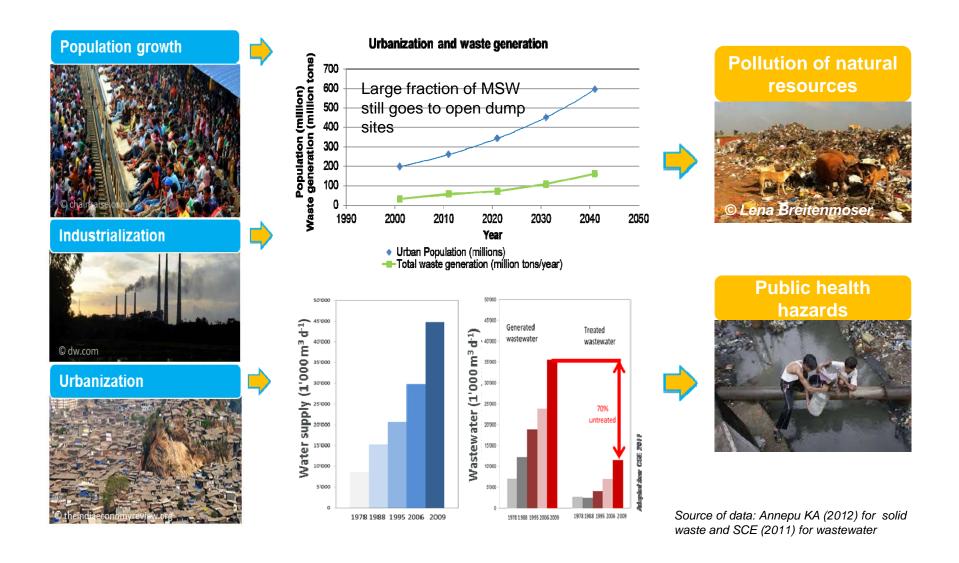
5th International Conference on Sustainable Solid Waste Management

Estimation of biogas potential in Indian communities using a Geographic Information System combined with Material Flow Analysis

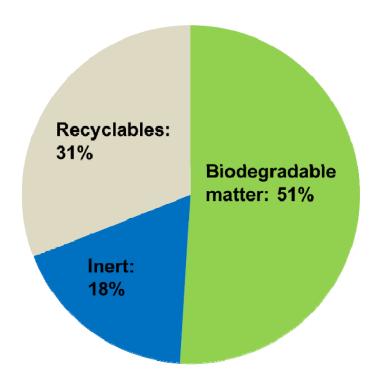
Thomas Gross^{a*}, Lena Breitenmoser^a, Hiya Dhar^b, Sunil Kumar^b, Thomas Wintgens^a and Christoph Hugi^a

^aInstitute for Ecopreneurship, University of Applied Sciences and Arts Northwestern Switzerland (FHNW)

bCSIR-NEERI, India



Major drivers on municipal waste generation in India



Biodegradables in MSW > 50%

Percentage of total wet weight MSW in urban India

Source: Annepu (2012)

Waste processing technologies

Thermal conversion processes:

- Incineration
- Pyrolysis
- Gasification
- Refuse-derived fuel

Bio-chemical conversion processes:

- Composting
- Vermi-composting
- Anaerobic digestion/ biomethanation

Chemical conversion processes

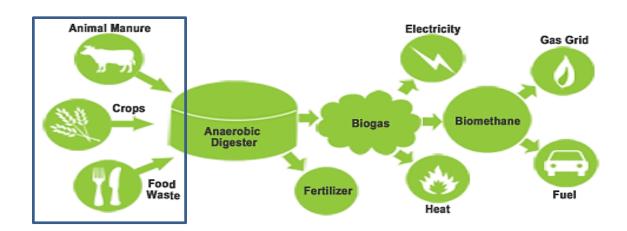
Transesterification


→ High organic fraction makes bio-chemical conversion processes particularly interesting

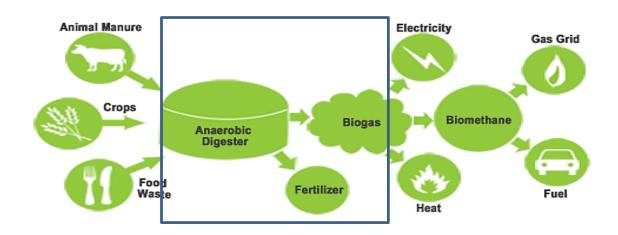
Anaerobic digestion for organic MSW

... at the crossroad between MSW treatment, energy and agriculture

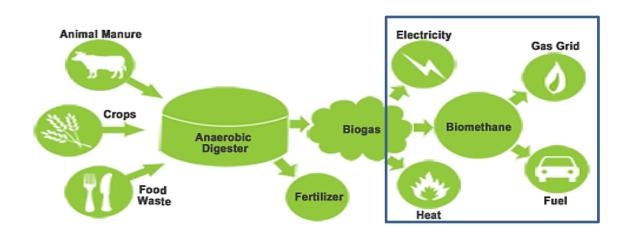
Sources: Minde GP, Magdum SS, Kalyanraman V (2013); Kalyani KA, Pandey KK (2014)



Estimation of outputs, benefits and trade-offs

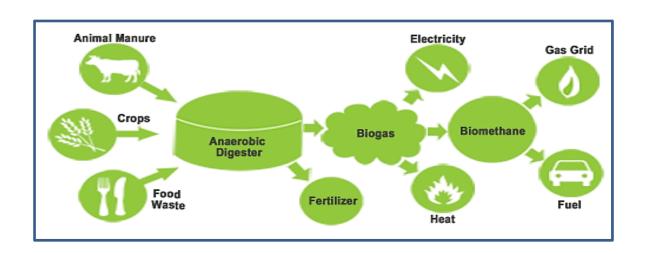

Information on quantity and quality of biowaste

Estimation of outputs, benefits and trade-offs



- Information on quantity and quality of biowaste
- Biogas/methane and fertilizer output per unit waste

Estimation of outputs, benefits and trade-offs



- Information on quantity and quality of biowaste
- Biogas/methane and fertilizer output per unit waste
- Demand for outputs

Estimation of outputs, benefits and trade-offs

- Information on quantity and quality of biowaste
- Biogas/methane and fertilizer output per unit waste
- Demand for outputs
- Interactions with other sectors and interests (e.g. agriculture, water and energy sectors etc.)

Research questions

Potential vs. demand estimation:

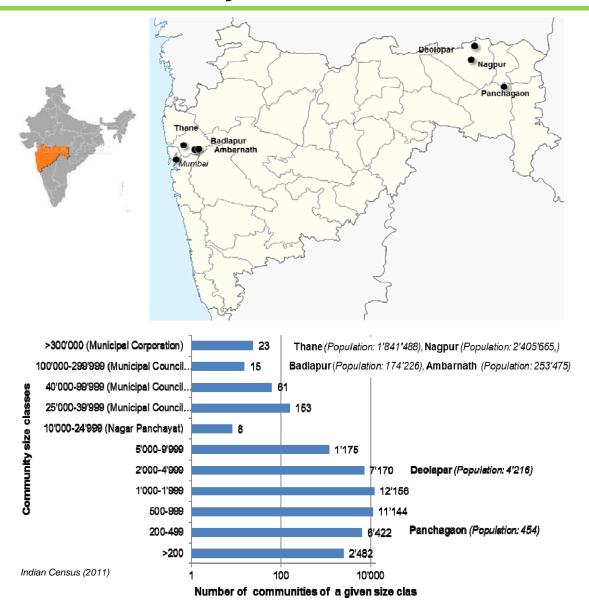
What is the energy potential from biowaste in Indian villages, towns and cities? Which fraction of the energy demand can be covered?

Interactions with other sectors (trade-offs/synergies):

Does biowaste have other functions which might be taken away? By how much could waste deposition be reduced?

Approach for (Indian) communities:

Are data available at relevant scales? How can these be utilized at a community scale for planning?


This is part of the project 'Optimization of organic waste to energy systems in India' funded by the Swiss National Science Foundation and the Indian Department of Science and Technology under the Indo Swiss Joint Research Programme (ISJRP) 2013-2016.

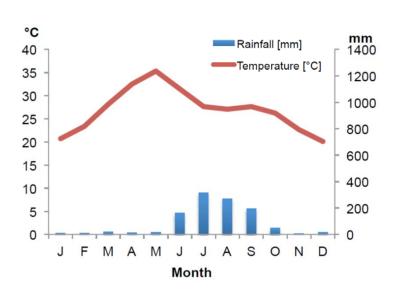
Methods and materials

Six case study communities in Maharashtra

5th International Conference on Sustainable Solid Waste Management 21-24 June 2017, Athens

Nagpur, urban area

Ambarnath, urban and agricultural area



Panchagaon, agricultural area

Photographs: © Birgit Baumgartner

Worked example in this presentation: Nagpur City

- Ca. 2.4 Mio. inhabitants (2011)
- At the geographical centre of India with a tropical savannah climate
- Mainly urban area, with some agricultural land use at the boundary

Potential and demand

Land cover/'ecosystem' (LC/ES) properties

- Urban: Population density
- Agricultural, pastures: Livestock density
- Agricultural, cropland: Crops grown

LC/ES functions

- Biowaste/capita/time
- Manure/animal (livestock)/time
- Crop residues

Societal activities

- Energy consumption in households, industries, transportation etc.
- Agriculture, parks etc.

Potential and demand

Land cover/'ecosystem' (LC/ES) properties

- Urban: Population density
- Agricultural, pastures: Livestock density
- Agricultural, cropland: Crops grown

LC/ES functions

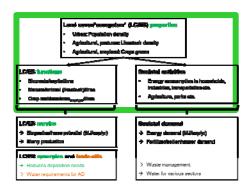
- Biowaste/capita/time
- Manure/animal (livestock)/time
- Crop residues/area_{crop type}/time

LC/ES service

- → Biogas/methane potential (MJ/cap/yr)
- → Slurry production

LC/ES synergies and trade-offs

- → Reduces deposition needs
- → Water requirements for AD


Societal activities

- Energy consumption in households, industries, transportation etc.
- Agriculture, parks etc.

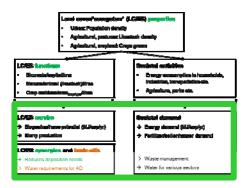
Societal demand

- → Energy demand (MJ/cap/yr)
- → Fertilizer/soil enhancer demand
- → Waste management
- → Water for various sectors

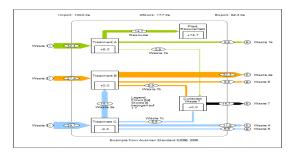
Free open source tools applied

Geographic Information System

GIS platform: QGIS


(www.qgis.org)

Free open source tools applied


Geographic Information System

GIS platform: QGIS

(www.qgis.org)

Material Flow Analysis

MFA tool: STAN

(http://stan2web.net)

- Transferable to various stakeholders (governmental, NGOs, engineering etc.)
- Learning events held in India and Nepal (for PhD/Postdocs)

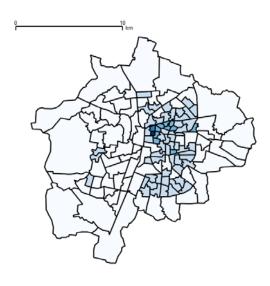
Biochemical Methane Potential (BMP)

Waste sampling in six case study communities (biodegradable fraction, total solids, volatile solids, C/N etc.)

Biochemical Methane Potential (BMP) assays of local biowaste to estimate bioenergy potential

Semi-continuous experiments in 25 L mini-reactors

→ Breitenmoser et al., in prep.



Data inputs (examples)

GIS input

- Official ward map
- Indian national Census of 2011

MFA input

Assessment of the status of municipal solid waste management in metro cities, state capitals, class I cities, and class II towns in India: An insight

Sunil Kumar^{3,*}, J.K. Bhattacharyya³, A.N. Vaidya³, Tapan Chakrabarti³, Sukumar Devotta³, A.B. Akolkar¹
*National Environmental Ingineering Research Institute (NITRE), Nethro Mary, Nagare 440 000, India

"DEVELOPMENT OF REGIONAL MUNICIPAL SOLID WASTE MANAGEMENT IN MMR"

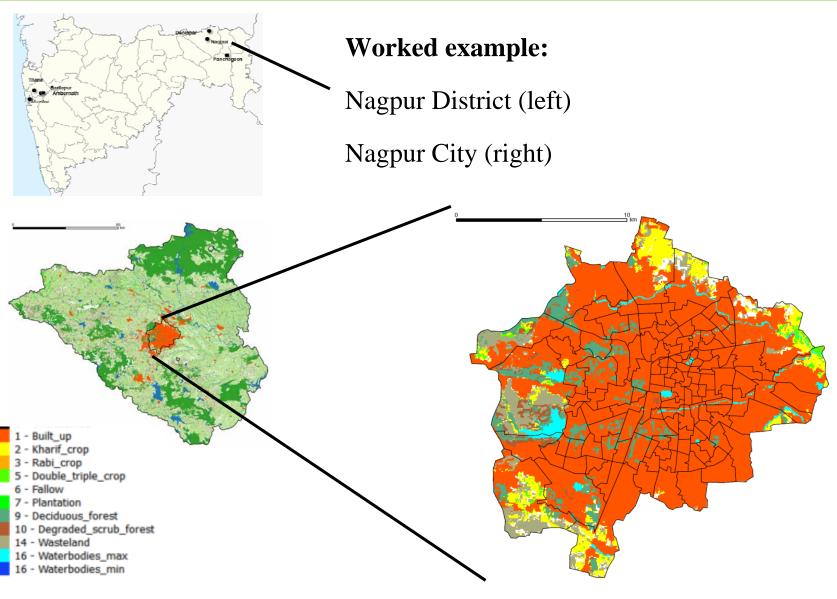
WASTE CHARACTERIZATION STUDY FOR MMR

Mumbai Metropolitan Region Development Authority (MMRDA)

NATIONAL ENVIRONMENTAL ENGINEERING

- Scientific papers
- Reports
- Interviews

Verification & refinement



Results and discussion

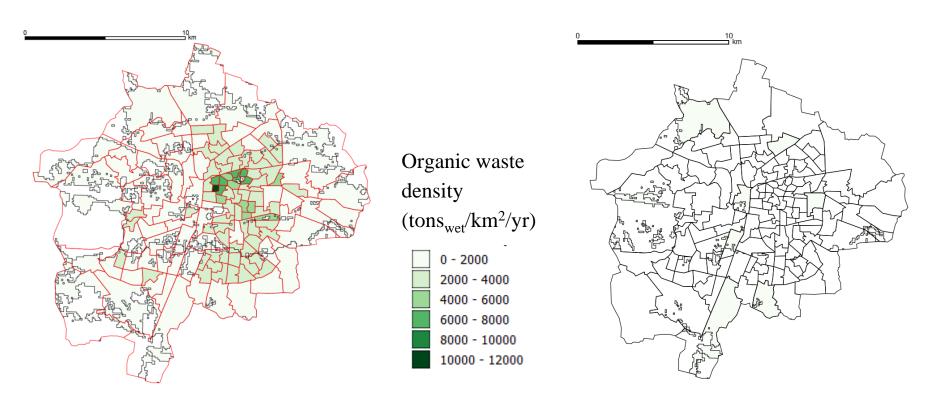
LC/ES properties: Land cover

LC/ES functions: Organic waste (examples)

Household biowaste:

Population density

X


Biowaste per capita and year

Manure:

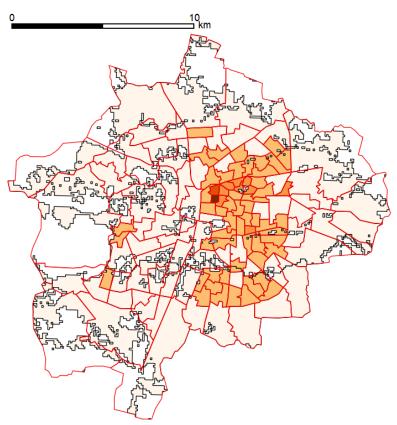
Livestock density

X

Manure per animal and year

LC/ES services: BMP results

- Translation of LC/ES functions to services
- For energy derived from biogas: Waste characterization and biochemical methane potential (BMP) experiments:


Organic waste	TS (% _{ww})	VS (% _{TS})	Methane yield (m³/t _{vs})
Biowaste (urban)	20-35	75-89	190-370
Cattle slurry	15-25	70-90	120-300
Market waste (various)	5-30	75-85	200-380

→ Preliminary results (Breitenmoser et al., in prep.)

Bioenergy potential:

GJ km⁻² yr.⁻¹

'Ecosystem' service: Renewable energy potential

Biowaste x BMP_{biowaste}

+

Manure x BMP_{manure}

+

(Crops residues x BMP_{crop res})

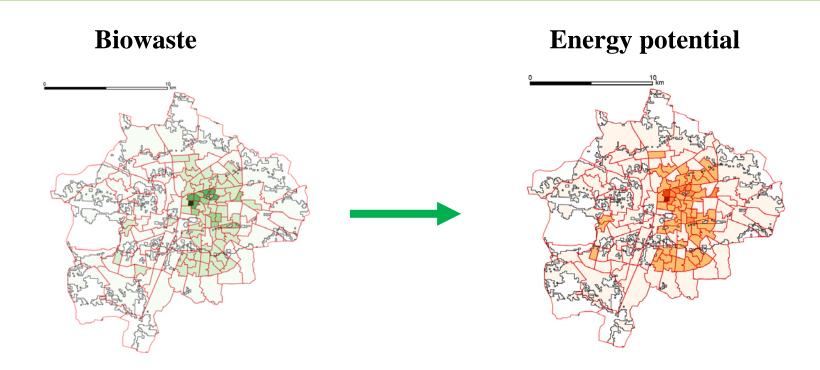
→ Spatial distribution of waste vs. energy useful for AD planning (where, how large, which substrate)

5th International Conference on Sustainable Solid Waste Management 21-24 June 2017, Athens

0 to 5'000

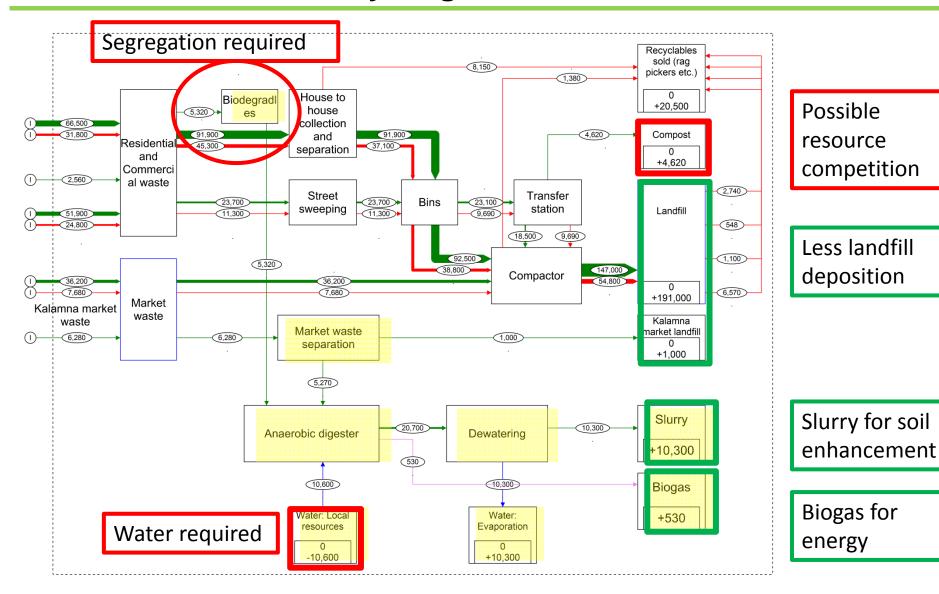
5'001 to 10'000

10'001 to 15'000 15'001 to 20'000 20'001 to 25'000

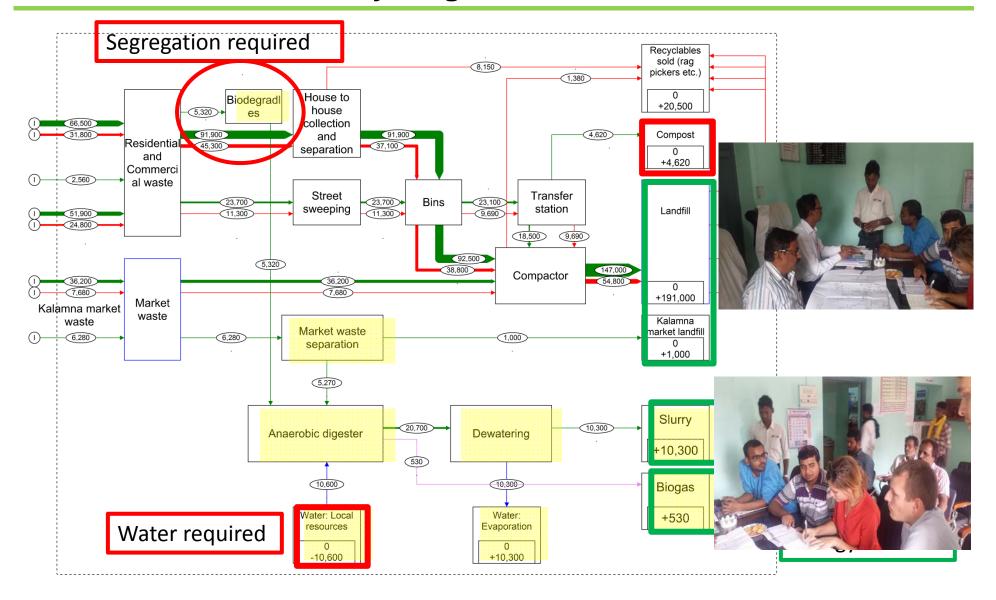


Integration into existing MSWM system

From waste to output utilization is not always straight forward, e.g.:


- Current utilization of some waste fractions (e.g. composting or feeding to animals)
- Which fractions are source segregated?
- Where is the waste currently deposited...
- Stakeholder involved

MFA to visualize synergies and trade-offs



MFA to visualize synergies and trade-offs

Data availability/practicability (excerpt)

Item	Data source	Spatiotemporal resolution	Data readiness
Population number	National census of India	Wards; 1991, 2001, 2011	++
Land cover/Land use	National Remote Sensing Institute of India	2001, 2011	++
Biowaste per capita and day	Available for some cities from official municipality reports	Various	+
Number of livestock per 1'000 households	Department of Animal Husbandry, Dairying & Fisheries	Districts;	+
Local waste management situation	At community level, interviews etc. required	Community	-
Methane potential of organic waste	Various; this study	Various	+/++

- ++ Very good
- + Ok, but more assumptions required
- Only locally available, on-site research required

Potential vs. demand

Preliminary results for city context (Nagpur):

Theoretical biogas potential (if 100% of available biowaste were used and collected):

0.5 - 0.7 GJ/cap/yr

- → Ca. 2-3% of total energy demand
- → Ca. **15-25% of LPG demand for cooking** (77% of households in Nagpur cook with LPG)
- → Assumptions: 0.5 Nm³ methane per person and day, 60% methane content in biogas, 38 MJ Nm⁻³ methane

On-going research:

- Logistics of biogas to end-user
- Slurry utilization in an urban context

Conclusions

Conclusions (I)

Biogas potential in Indian communities

- In the urban example, up to ca. 5% of total energy demand and up to 25% of LPG cooking needs
- More expected in rural context (work in progress)

Trade-offs and synergies

- In the urban example, little trade-offs are expected
- In rural communities, concurrence with animal feeding has to be avoided
- Reduced need for organic waste deposition; inputs for agriculture and urban green spaces

Conclusions (II)

Approach:

- Allows to integrate information from different sectors and results from lab analyses
- Helps communicating with stakeholders from different sectors
- Transferable to other sites, no financial barriers due to freeware tools
- Maximum quality of MFA is that of its input data
- Broad approach to facilitate between sectors (MSWM, energy, agriculture), does not replace detailed project planning

Thank you for your attention Dhandyavaad!

Contact details:

Thomas Gross
Institute for Ecopreneurship,
School of Life Sciences, FHNW
Muttenz, Switzerland

thomas.gross@fhnw.ch

Acknowledgements: The study received funding from the Swiss National Science Foundation and the Indian Department of Science and Technology under the Indo Swiss Joint Research Programme (ISJRP) 2013-2016.

