Comparison of single-stage and temperature-phased anaerobic digestion of sugar beet by-products

Kaoutar Aboudi*, Xiomara Gómez Quiroga, Carlos José Álvarez Gallego and Luis Isidoro Romero García

Chemical Engineering and Food Technology Department, University of Cádiz, Campus Río San Pedro, 11510 Puerto Real, Spain

*kaoutar.aboudi@uca.es

22 June 2017
Contents

- BACKGROUND
- EXPERIMENTAL STRATEGY
- RESULTS AND DISCUSSION
- CONCLUSIONS
Lignocellulosic biomass

1 tonne of Sugar beet processed → 70 kg of exhausted dried pulp
≈ 250 kg of exhausted pressed pulp

Total global production in 2014
267 Mt

20 Mt of dry SBP

Animal feedstock supplement
Lignocellulosic biomass

Bioenergy = Anaerobic digestion technology
ANAEROBIC DIGESTION = BIOLOGICAL PROCESS

- **Complex biopolymers**
 - Carbohydrates
 - Proteins
 - Fat/oil

- **Simple monomers**
 - Sugars
 - Aminoacids

- **Volatile fatty acids**
 - Alcohols

- **Acetic acid**

- **H_2**
- **CO_2**

- **CH_4**
- **CO_2**

HIDROLYSIS
ACIDOGENESIS
ACETOGENESIS
METHANOGENESIS

Background
Experimental strategy
Results & Discussion
Conclusions
SINGLE STAGE ANAEROBIC DIGESTION PROCESS

Complex biopolymers
- Carbohydrates
- Proteins
- Fat/oil

Simple monomers
- Sugars
- Amino acids

Volatile fatty acids
- Alcohols

Acetic acid

HIDROLYSIS
ACIDOGENESIS
ACETOGENESIS
METHANOGENESIS
TWO PHASED ANAEROBIC DIGESTION PROCESS

DARK FERMENTATION
- Complex biopolymers
 - Carbohydrates
 - Proteins
 - Fat/oil
- Simple monomers
 - Sugars
 - Aminoacids
- Volatile fatty acids

ACIDOGENESIS
- Acetic acid

HIDROLYSIS
- Sugars
- Aminoacids

METHANOGENESIS
- H₂
- CO₂
- CH₄
- CO₂

ACETOGENESIS
- Acetic acid

METHANOGENESIS
- H₂
- CO₂
- CH₄
- CO₂

Background
Experimental strategy
Results & Discussion
Conclusions
TWO PHASED ANAEROBIC DIGESTION PROCESS

DARK FERMENTATION

- Simple monomers
 - Sugars
 - Amino acids

METHANOGENESIS

- Volatile fatty acids
- Acetic acid
- Acetogenic
- Methanogenic

HIDROLYSIS

- Complex biopolymers
 - Carbohydrates
 - Proteins
 - Fat/oil

ACIDOGENESIS

ACETOGENESIS

METHANOGENESIS

CH₄

Background
Experimental strategy
Results & Discussion
Conclusions
OBJETIVE
SINGLE STAGE VS TWO-PHASED ANAEROBIC DIGESTION OF SUGAR BEET BY-PRODUCTS
Experimental design

Run I
Single stage

HRT = 20 days
OLR = 3.4 ± 0.2 (gVS/Lr*d)

Acidogenic

HRT = 10 days
OLR = 6.6 ± 0.4 (gVS/Lr*d)

Methanogenic

HRT = 20 days
OLR = 2.5 ± 0.2 (gVS/Lr*d)

Run II
TPAD

35°C

55°C

65°C

35°C
Experimental design

Run I
Single stage

- **HRT = 20 days**
- **OLR = 3.4 ± 0.2 (gVS/Lr*d)** at 35°C

Run II
TPAD

- **HRT = 10 days**
- **OLR = 6.6 ± 0.4 (gVS/Lr*d)** at 55°C
- **HRT = 20 days**
- **OLR = 2.5 ± 0.2 (gVS/Lr*d)** at 35°C

Acidogenic

- **55°C**
- **HRT = 10 days**
- **OLR = 6.6 ± 0.4 (gVS/Lr*d)**

Methanogenic

- **35°C**
- **HRT = 20 days**
- **OLR = 2.5 ± 0.2 (gVS/Lr*d)**
Semi-continuous stirred tank digesters

- Biogas collection
- Mixing system
- Temperature monitoring
- Feeding/Effluent
- Heater plate
Single stage anaerobic digestion assays

Background
Experimental procedure
Results & Discussion
Conclusions

Accumulated methane (L)

- **Mesophilic**
- **Thermophilic**

MPR = 0.55 LCH\(_4\)/L\(_r\) *d

MPR = 0.30 LCH\(_4\)/L\(_r\) *d

45%
Results & Discussion

Single stage anaerobic digestion assays

Mesophilic
- pH = 7 - 7.8
- VS removal (%) = 83%

Thermophilic
- pH = 7.5 - 8
- VS removal (%) = 66%
Combination 1: Thermophilic acidogenic - mesophilic methanogenic

HPR = 0.45 (LH2/Lr*d)

MPR = 0.19 LCH4/Lr*d
Combination 1: Thermophilic acidogenic - mesophilic methanogenic

Results & Discussion

Two-phased anaerobic digestion assays

- **Acidogenic digester**
 - pH = 5.5 - 6
 - VS removal (%) = 46%

- **Methanogenic digester**
 - pH = 7.5 - 8
 - VS removal (%) = 70%
Combination 1: Thermophilic acidogenic - mesophilic methanogenic

Acidogenic digester

- pH = 5.5 - 6
- VS removal (%) = 46%

Methanogenic digester

- pH = 7.5 - 8
- VS removal (%) = 70%

Acetoclastic methanogens inhibition
Two-phased anaerobic digestion assays

Combination 2: Hyperthermophilic acidogenic - mesophilic methanogenic

<table>
<thead>
<tr>
<th>HPR</th>
<th>0.11 LH2/Lr*d</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPR</td>
<td>0.09 LCH4/Lr*d</td>
</tr>
</tbody>
</table>

Background

Experimental procedure

Results & Discussion

Conclusions
Two-phased anaerobic digestion assays

Combination 2: Hyperthermophilic acidogenic - mesophilic methanogenic

Background Experimental procedure

Results & Discussion

Conclusions

Acidogenic digester

Methanogenic digester

- **pH = 5.5 - 6.5**
 - VS removal (%) = 23%

- **pH = 7.5 - 8.5**
 - VS removal (%) = 72%
Two-phased anaerobic digestion assays

Combination 2: Hyperthermophilic acidogenic - mesophilic methanogenic

Background

Experimental procedure

Results & Discussion

Conclusions

Acidogenic digester

- pH = 5.5 - 6.5
- VS removal (%) = 23%

Methanogenic digester

- pH = 7.5 - 8.5
- VS removal (%) = 72%

Acetoclastic methanogens inhibition
Two-phased anaerobic digestion assays

Background

Experimental procedure

Results & Discussion

Conclusions
Two-phased anaerobic digestion assays

Background

Experimental procedure

Results & Discussion

Conclusions

Thermophilic acidogenic

Palmitate

Lignocerate

Mesophilic methanogenic

LCFAs concentrations (mg/L)

Hyperthermophilic acidogenic

LCFAs concentrations (mg/L)

LCFAs concentrations (mg/L)

Mesophilic methanogenic

LCFAs concentrations (mg/L)
Is the TPAD suitable for sugar beet by-products??

Single stage ✓

Next step

Co-digestion:
Including a livestock co-substrate in the TPAD assays (pig slurry and cow manure)
Thank you for your attention