

Hydrothermal carbonization of biomass for production of densified solid fuel

Asli Toptas Tag, <u>Gozde Duman</u>, Jale Yanik Ege University, Department of Chemistry, Izmir/ Turkey

Stable carbon-rich product obtained from the thermochemical conversion of plant- and animal-based biomass in an oxygen-limited environment

Lower amount of volatile organic compounds (VOCs),

- No water
- > Stored for many years without decay.
- > The higher energy density

What is biochar made from?

How is biochar made?

Fuel Characteristics

- ✓ High Yield
- ✓ High energy density
- ✓ High combustion reactivity
- ✓ Low volatile matter
- ✓ Low ash content

<u>Pyrolysis</u> High yield High ash content Pretreatment of wet biomass

Hydrothermal Carbonization (HTC) Under development Pressure cooker principle

- Applicable to wet biomass
- Relatively lower temperatures
- Smaller reactor volumes

Investigation of biochar obtained from hydrothermal carbonization as energy feedstock.

Comparison with biochars derived pyrolysis process

Feedstock

	SS	PL	AB						
Ultimate analysis (wt.%, dry basis)									
С	34.17	35.70	35.10						
Н	4.92	5.27	4.00						
Ν	1.48	9.61	1.05						
S	0.45	0.24	0.95						
0	51.08	40.98	38.10						
Proximate analysis (wt.%, dry basis)									
Volatile matter	74.6	68.3	58.4						
Ash	7.9	8.2	20.8						
Fixed carbon	17.5	23.5	20.8						
High heating value (HHV), MJ kg ⁻¹									
	13.50	15.10	11.60						

Inorganic content of biomass, % wt.

	SS	PL	AB
Na ₂ O	0.19	0.40	0.83
K ₂ O	0.47	0.63	0.25
CaO	4.09	7.83	4.33
MgO	1.78	1.28	3.16
SiO ₂	4.08	1.61	0.76
AI_2O_3	0.06	0.52	0.90

Sunflower stalk (SS)

Seaweed (AB)

• Hydrothermal carbonization (HTC)

Methodology

Experimental conditions

• Low Temperature Pyrolysis

Biochar Analyses

S.A. Channiwala, P.P. Parikh, Fuel 81 (2002) 1051–1063.

Yield and Energy Density

Factor	-1.68	-1	0	+1	+1.68
Temperature (°C)= X ₁	150	175	212	250	275
Duration (min)= X_2	0	60	150	240	300
Biomass:water ratio = X_3	0.05	0.15	0.30	0.45	0.55

Optimization conditions

Maximize energy density

Mass yield > 40 %

	SS	PL	AB
Temperature, °C	250	250	225
Duration, min	150	120	120
Biomass:water ratio	0.30	0.30	0.30
Energy density	1.68	1.76	1.73
Mass yield, % wt.	52.0	40.2	45.1

Analyses of Biochars

+ 25 °C Optimum Temperature - 25 °C

	Elemental analysis,wt %					Pi ana	roxima alysis,v	ite wt %	HHV, Mi kg-1	Yield, % wt	Energy
	С	Н	Ν	S	0	Ash	VM	FC	NIJ.Kg	/0	Density
H-SS-225	51.3	5.71	0.82	0.08	36.19	5.9	69.6	24.5	20.77	55.1	1.54
H-SS-250	55.07	5.94	0.94	0.09	32.96	5.0	55.4	39.6	22.71	52.0	1.68
H-SS-275	58.16	5.64	0.91	0.04	32.25	3.0	53.3	43.7	23.54	41.0	1.74
T-SS-300	50.89	4.09	1.17	0.35	31.30	12.2	47.1	40.7	19.11	65.1	1.42
H-PL-225	57.57	4.66	4.12	0.41	26.94	6.3	60.2	33.5	22.65	42.2	1.50
H-PL-250	63.87	5.45	5.36	0.37	19.05	5.9	50.1	44.0	26.58	40.2	1.76
H-PL-275	62.01	6.32	5.70	0.26	21.41	4.3	48.2	47.5	26.73	32.8	1.77
T-PL-300	53.57	3.69	5.41	0.19	24.34	12.8	44.1	43.1	20.23	53.2	1.34
H-AB-200	48.06	4.56	1.68	0.21	34.69	10.8	55.4	33.8	18.33	51.6	1.58
H-AB-225	53.26	4.01	1.52	0.28	29.03	11.9	50.2	37.9	20.07	45.1	1.73
H-AB-250	54.29	4.09	1.56	0.36	30.70	9.0	47.2	43.8	20.42	41.2	1.76
T-AB-300	41.49	3.23	1.86	0.15	24.57	28.7	45.9	25.4	15.13	63.2	1.30

FTIR spectrum

• aliphatic C-H stretching vibration

- alcohol C-O stretching vibration
- aliphatic C=O stretching vibration
- aromatic ring vibration

Van Krevelen Diagram

PL: Polultry litter SS: Sunflower stalk AB: Seaweed

H: HTC biochar T: Pyrolysis biochar

Combustion behavior

7.27;20.15 3.10;17.30

2.631

485

218

3.589

462

233

20.29

4.708

472

258

Combustion

Reactivity, %/min.oC

Burnout, %/min

Ignition, °C

8.40; 7.96

2.224

543

235

5.1

1.123

517

268

14.27

2.771

564

282

4.88

1.03

519

273

5.16; 10.13 17.25; 9.47

4.057

459

261

2.156

475

228

- Hydrothermal carbonization is a promising method to produce biochar with high quality.
- The temperature is the main parameter effecting the yield and energy density
- Application on wet biomass
- Lower ash content biochar
- Higher energy density than biochar obtained from pyrolysis

Thank you for listening !

We would like to acknowledge the contribution of the COST Action TD1107 (Biochar as option for sustainable resource management)

The experiments designed by CCD

Run	Parameter 1 Temperature(⁰ C)	Parameter 2 Duration (min)	Parameter 3 Biomass: water ratio
1	150	150	0.30
2	175	60	0.15
3	175	60	0.45
4	175	240	0.15
5	175	240	0.45
6	212	0	0.30
7	212	150	0.05
8	212	150	0.30
9	212	150	0.30
10	212	150	0.30
11	212	150	0.30
12	212	150	0.30
13	212	150	0.30
14	212	150	0.55
15	212	300	0.30
16	250	60	0.15
17	250	60	0.45
18	250	240	0.15
19	250	240	0.45
20	275	150	0.30

19

Thermogravimetric analysis

Conditions

Heating rate: 20 °C /min Combustion atmosphere: Air Air flow: 100 mL / min Sample amount:~ 5- 10 mg

I, ignition temperature

B, burnout temperature, the rate of weight loss become <1 wt.%/ min

M, highest d*m*/d*T* value

Reactivity = 100 x maximum combustion rate / peak temperature

Wang C, et al. Biomass and Bioenergy 2009, 33(1), 50-560

Quadratic models

- x₁: Temperature
- x₂: Duration
- x₃: Biomass: water

Y_i: mass yield, energy yield

 $Y_i = \beta_0 + B_1 \cdot x_1 + B_2 x_2 + B_3 \cdot x_3 +$

 B_{11} , $x_1^2 + B_{22}$, $x_2^2 + B_{33}$, $x_3^2 + B_{12}$, x_1 , $x_2 + B_{13}$, x_1 , $x_3 + B_{23}$, x_2 , x_3

У _i		B ₀	B ₁	B ₂	B ₃	B ₁₂	B ₁₃	B ₂₃	B ₁₁	B ₂₂	B ₃₃
Mass Yield	AB	+46.89	-8.11	-1.15	-4.191E-3	-0.66	+0.19	-0.37	+0.78	-0.027	+0.039
	PL	+46.67	-7.97	-0.22	-0.47	+0.050	-0.33	+0.065	+0.48	+0.44	0.66
	SS	+59.63	-9.63	-2.87	+0.47	-1.95	-0.14	+0.055	-1.44	-0.39	+0.13
Energy Density	AB	+1.67	+0.16	+0.020	-9.985E-4	-0.025	-0.015	+0.000	-0.045	-0.007445	+1.379E-3
	PL	+1.54	+0.17	+0.019	+0.019	+1.250E-3	+1.250E-3	-0.016	+0.012	-5.359E-3	-2.367E-4
	SS	+1.48	+0.16	+0.041	-8.587E-3	+0.011	+0.016	+3.750E-3	+0.032	-0.024	+1.600E-3