

Pilot scale pyrolysis products

Anastasia Zabaniotou, Professor

Aristotle University of Thessaloniki Polytechnic School, Chemical Engineering Department

The 24th Annual Tyre Recycling Conference Focus on the future :Circular Economy

22 - 24 March 2017 - The NH Sablon Hotel, Brussels

AIM

• The aim of the paper is to present Pyrolysis of EoL tyres at

• **TRL 7** – system prototype demonstration in operational environment-

• offering the recycling sector an opportunity to see the *latest challenges and opportunities towards defining standards*.

Circular Economy

Tyre recycling is facing a number of challenges towards taking its place in the **Circular Economy**. This work on Pyrolysis is exploring these challenges with the aim of identifying solutions and opportunities for recyclers especially in terms of **material and energy** options

The concept of a circular economy

Ellen MacArthur Foundation

 A circular economy is restorative and regenerative by design, and aims to keep products, components, and materials at their highest utility and value at all times. The concept distinguishes between technical and biological cycles.

The concept of a circular economy and ELT's

Recycled tyres become secondary raw materials that go into new products.

As a result, the tyre circular economy is open and ELTs become an enabler for several other industries (from agriculture to mining, from construction to the food industry).

Slow Rotary Kiln Pyrolysis

Rotary Pyrolysis Technology and products will be presented along with evaluating their characteristics.

This can be part of the discussion on meeting demands for sustainable materials including

oil, pyrochar or other carbon materials among others, as well as **metals** and textiles in various formats.

TRL 7

Data collected at **TRL 7** level for pyrolytic outputs from

DEPOTEC an EU LIFE+ project

will illustrate how this sector is promising as a means of generating high returns for those who manage to control the input and the output to obtain products with consistent standards within the environmental constraints set out in European and National environmental laws.

LIFE 10/ENV/IE/00695

https://www.facebook.com/Depotec-1452104991757397/

The 24th Annual Tyre Recycling Conference

22 – 24 March 2017 - The NH Sablon Hotel, Brussels

DEPOTEC TARGET

LIFE 10/ENV/IE/00695

With the cooperation of DEPOTEC's partners

- Several laboratory and bench scale (conventional or more innovative) tyre pyrolysis reactors are documented, while there are only few pilot/demonstration or industrial applications.
- Pilot units operated so far, are mainly based on batch rotary kiln reactors, aimed at producing both energy and carbon materials. The operation conditions reported, demand temperature ranging from 400°C to 600°C under atmospheric pressure.

- 1. Laboratory captive sample reactor (High Heating rates). It is mostly used for kinetic parameter determination.
- 2. Laboratory fixed bed reactor(Moderate Heating rates-High Final Temperatures). More detailed collection of the products is achieved, demite several limitations

ACTIVATION EXPERIMENTS at lab

- 1. Laboratory fixed t Temperatures). At temperature and f showed burnoff lev surface in the area c
- 2. Rotary kiln reactor process in the exact
- 3. Furthermore, the us is also promoted temperatures and created problems. N

Pyrolysis at pilot scale

DEPOTEC LIFE+ END OF PROJECT WORKSHOP

Depolymerisation Technology for Rubber with Energy Optimisation to Produce Carbon Products

EU Life Project Reference: LIFE10 ENV/IE/000695

Wednesday 25th November 2015

The Anner Hotel, Thurles, Co. Tipperary, Ireland

DEPOTEC is supported by the LIFE financial instrument of the European Community

Characterisation of pilot scale pyrolysis products

Gas product composition

Evolution of gas composition and gas LHV over sampling

Scale up from laboratory to pilot

Liquid product composition

Elemental analysis

Sample	TPO-L5	
Ultimate analysis wt. %		
С	86.04	
Н	12.47	
Ν	n.d	
S	0.54	
H/C ratio	1.74	
Heating value		
GCV (KJ/Kg)	44.22	

Rheological

sharacteristics	TPO-L5	Diesel
TPO density at 15°C (Kg L ⁻¹)	0.863	0.83
Kinematic viscocity at 40°C	2.92	2.58
(cSt)		

Scale up from laboratory to pilot

TPO from pilot scale operation

- 1. Has higher heating value
- 2. Better H/C ratio
- 3. Higher percentage of gasoline and diesel fractions
- 4. Lower density
- 5. Lower kinematic viscosity

Compared to TPO from laboratory scale operation

TPO includes alkanes, alkenes and valuable chemicals (limonene) d can be considered as a heavier diesel fraction

> Combustible fuel

Solid product composition

ELTs-char based AC: Characteristics and proposed uses

Steel

- The steel element recovered from all tyres is of an extremely high quality and is, when clean, in demand by the steel industry as scrap feedstock for the production of new steel.
- The lower the level of contamination of the
- steel, the higher the value.

Energy balance of the process

Sankey diagram of the pilot scale pyrolysis process (steady-state) with energetic valorization of gaseous and liquid products.

Conclusions

DEPOTEC technology

Operated by 1-2 persons per shift
Validated technology
Ready for commercialization

DEPOTEC technology

- □ Can process up to 876 tonnes of ELTs annum⁻¹ (continuous operation).
- □ Sustainable operation.
- **□** Energy surplus is expected.
- □ 420 tonnes of char are produced.
- **Char has a low value if not treated.**
- □ Steam activation can be performed in the same reactor.
- □ In a continuous operation, 118 tonnes of steam prepared AC can be produced with a high surface area and considerable selling price.
- □ The obtained product yields and product characteristics are of high reproducibility and high accuracy

Thank you for your attention