Landfill Leachate Treatment by the Active Clay Sediments Process

Petros Gikas¹ & Socratis Argyropoulos²
¹ School of Environmental Engineering
Technical University of Crete, Greece
² Zeologic S.A., Greece
Typical landfill cross section
Leachate Collection and Drainage System

- Waste
- Drainage Layer
- Geomembrane Liner
- Leachate Collection Pipe
Drainage system
Landfill leachate
Typical characteristics of landfill leachate

- High COD (up to 30,000 mg/L)
- Low BOD$_5$/COD ratio (0.4-0.1)
- High concentration of ammonia (up to 2,000 mg/L)
- Moderate concentration TSS (up to 800 mg/L)
- Moderate concentration of phosphate
- High concentration of heavy metals
- High conductivity (up to 50,000 μS/cm)
- Close to neutral pH
- Dark color

Characteristics depend on the landfilling stage
Common treatment practices

Activated sludge
Coagulation/flocculation
Membrane bioreactors
Chemical oxidation
Reverse osmosis
Landfill leachate

Usually, combinations of the above are employed

Non of the above or even combinations are effective

Some processes generate recalcitrant by-products (e.g. RO concentrate)
Geopolymers

Geopolymers (active clay sediments):
Three-dimensionally cross-linking alumininosilicates amorphous inorganic materials
Consist of various inorganic repeating units, such as:
silico-oxide (-Si-O-Si-O-)
silico-aluminate (-Si-O-Al-O-)
ferro-silico-aluminate (-Fe-O-Si-O-Al-O-)
alumino-phosphate (-Al-O-P-O-)

Geopolymerisation:
A relatively complex reaction (polycondensation) between aluminosilicate-containing powders (e.g. fly ashes and/or reactive clays) with alkali metal silicates or hydroxides
Uses of geopolymers:

- Binding materials
- Ceramics
- Arts and decoration
- Restoration of archeological findings
- Fire resistance materials
- Adsorption/encapsulation of wastes

Use of geopolymers for wastewater treatment:

- Irreversible adsorption of a large spectra of wastes (organic, inorganic, heavy metals)
- Can be structured so to be adsorption-selective (eg: for heavy metals, organic wastes, radioactive wastes, etc)
Geopolymer
Landfill leachate wastewater treatment using active clays sentiments (geopolymers)

- Flow equalization
- pH adjustment
- Coagulation- flocculation
- Removal of solids (filtration)
- Chemical oxidation
- Adsorption on geopolymer-coagulation-flocculation
- Removal of sediment (clarification)
- Filtration of supernatant
- Equalization
- Reduction of conductivity (reverse osmosis)
- Disinfection
- Sludge dewatering
Process diagram for landfill leachate treatment
Visual observation at various stages of treatment

Experiments have been performed at lab scale

(a) Raw landfill leachate
(b) After coagulation-filtration
(c) After chemical oxidation,
(d) After geochemical reaction
(e) After reverse osmosis

School of Environmental Engineering
Technical University of Crete
Treatment efficiency stage by stage: COD and BOD$_5$
Treatment efficiency stage by stage: TSS and conductivity

- **TSS**
 - Inlet: 500 mg/L
 - Primary filtration: 100 mg/L
 - Chemical oxidation: 50 mg/L
 - Geochemical reaction: 20 mg/L
 - Final filtration: 5 mg/L
 - Reverse osmosis: 1 mg/L

- **Conductivity**
 - Inlet: 35,000 μS/cm
 - Primary filtration: 35,000 μS/cm
 - Chemical oxidation: 35,000 μS/cm
 - Geochemical reaction: 35,000 μS/cm
 - Final filtration: 35,000 μS/cm
 - Reverse osmosis: 35,000 μS/cm
Treatment efficiency stage by stage: TN and TP

Total Nitrogen

<table>
<thead>
<tr>
<th>Process</th>
<th>mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet</td>
<td>1.500</td>
</tr>
<tr>
<td>Primary filtration</td>
<td>1.400</td>
</tr>
<tr>
<td>Chemical oxidation</td>
<td>1.300</td>
</tr>
<tr>
<td>Geochemical reaction</td>
<td>1.200</td>
</tr>
<tr>
<td>Final filtration</td>
<td>1.100</td>
</tr>
<tr>
<td>Reverse osmosis</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Total Phosphorus

<table>
<thead>
<tr>
<th>Process</th>
<th>mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary filtration</td>
<td>70.000</td>
</tr>
<tr>
<td>Chemical oxidation</td>
<td>60.000</td>
</tr>
<tr>
<td>Geochemical reaction</td>
<td>50.000</td>
</tr>
<tr>
<td>Final filtration</td>
<td>40.000</td>
</tr>
<tr>
<td>Reverse osmosis</td>
<td>30.000</td>
</tr>
</tbody>
</table>

School of Environmental Engineering
Technical University of Crete
Treatment efficiency stage by stage: As and Ni

As

<table>
<thead>
<tr>
<th>Stage</th>
<th>Concentration (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet</td>
<td>350</td>
</tr>
<tr>
<td>Primary filtration</td>
<td>300</td>
</tr>
<tr>
<td>Chemical oxidation</td>
<td>250</td>
</tr>
<tr>
<td>Geochemical reaction</td>
<td>150</td>
</tr>
<tr>
<td>Final filtration</td>
<td>100</td>
</tr>
<tr>
<td>Reverse osmosis</td>
<td>50</td>
</tr>
</tbody>
</table>

Ni

<table>
<thead>
<tr>
<th>Stage</th>
<th>Concentration (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet</td>
<td>1800</td>
</tr>
<tr>
<td>Primary filtration</td>
<td>1600</td>
</tr>
<tr>
<td>Chemical oxidation</td>
<td>1400</td>
</tr>
<tr>
<td>Geochemical reaction</td>
<td>1200</td>
</tr>
<tr>
<td>Final filtration</td>
<td>1000</td>
</tr>
<tr>
<td>Reverse osmosis</td>
<td>500</td>
</tr>
</tbody>
</table>
Equalization tank
Geopolymer addition tank

School of Environmental Engineering
Technical University of Crete
Geopolymer inside the feeding silo
Filter press and sedimentation tank
The capital cost of a full geochemical wastewater treatment plant with capacity of 50 m³/8h/d has been calculated between 800,000-900,00 €

The operation cost (including chemicals, geopolymer and energy) has been calculated between 8-9 €/m³

Cost is competitive, taking into account the process stability and the fact that discharge limits can be achieved.
Conclusions

- The use of active clay sediments process can achieve complete treatment of landfill leachate, producing reclaimed water suitable for agricultural irrigation.

- The process comprises by a series of sub-processes, including pH adjustment, coagulation-flocculation, chemical oxidation, geopolymer reaction, clarification, filtration, reverse osmosis, disinfection.

- The capital and operational costs for small-medium olive processing faculty has been calculated as 800,000-900,000 €, 8-9 €/m³, respectively.

- Wastewater treatment process should take into account recent technological achievements and the needs of the modern society.

School of Environmental Engineering
Technical University of Crete
Thank you for your attention

Correspondence: petros.gikas@enveng.tuc.gr