

Magnetite nanoparticles and ferromagnetic

bionanocomposites for crude oil removal from water

K.B. Debs, D.S. Cardona, H.D.T. da Silva, P.S. Haddad, E.N.V.M. Carrilho, Geórgia Labuto¹

¹Department of Chemistry Federal University of São Paulo

Group of Applied Chemical Analyses

5th International Conference on Sustainable Solid Waste Management

Source: https://www.erudit.org

Source: http://www.theblackvault.com/document archive/oil-spills/#

Source: https://www.dosomething.org/facts/11 -facts-about-bp-oil-spill

Gulf of Mexico oil spill in 2010 -- the worst environmental disaster in U.S. history -- to cost

it \$ 40 billion.

Recovery of Spilled Oils Today

Methods	Exemples	Limitations	
Mechanicals	booms, skimmers	 Do not remove all oil 	
Chemicals	dispersants, surfactants and solidifiers	 Introduction of new substances in environment Does not necessarily allow the oil to be removed 	OIL Oleophilic WATER Hydrophilic
Biologicals	biodegradation	 Introduction of microorganisms and dispersants It is necessary the prospection and the control of ideal conditions for each microorganisms Do not permit the oil recovery 	Oil and water separate from each other before treatment. Oil droplets surrounded by surfactants; spreadind and breaking www.yfrom oil slick.

NEWS ALERT

French President Emmanuel Macron's party projected to win overwhelming majority in parliamentary election,

Regions | U.S. Politics | Money | Entertainment | Tech | Sport | Travel | Style | Health | Video

International Edition + $\, \mathcal{P} \,\equiv\,$

Cleaning up oil spills with magnets and nanotechnology

By Tom Levitt, for CNN () Updated 1404 GMT (2204 HKT) September 21, 2012

Researchers hope the use of magnets will allow them to recover more oil and lead to an easier clean up operation.

que for

Story highlights

Oil companies could soon be using an innovative new technique involving nanotechnology and magnets to

How to clean up oil spills

MIT researchers devise a surprisingly simple but effective method for magnetically separating oil and water.

Larry Hardesty, MIT News Office September 12, 2012

Press Inquiries

RELATED

Magnetic nanoparticles and composites: Biosorption

Source: http://www.science.tamu.edu

Magnetic nanoparticles and composites: Biosorption

Source: http://www.science.tamu.edu

Biomasses:

Low cost

Inactive biological materials

Renewable sources

Residues

Hydrophobic surfaces

Development of new materials

(such as composites)

Synthesis

Magnetic nanoparticles (MNP) Yeast Magnetic bionanocomposite (YB-MNP)

Yeast biomass

(YB)

Characterization

YB

 Main
 VPEE C0 Bat = f / 2 M Note Reduction to Main
 Big/times = 49.4 %
 Ei/f = 10.0 KV
 Signal A + VPSE C3
 Charler = 60 PA Main

 Main
 Name
 F1/TKXX
 IProtes = 10.9 A

MNP

N = 0.40% C = 3.5% H = 1.0% **YB-MNP**

N = 3.8% C = 29.7% H = 4.3%

Elemental Analyses

magnified 7000X

ATHENS2017

Characterization

Magnetization

zeta potential

YB = -9.39 \pm 0.86 mV (negatively charged)

YB-MNP = -13.9 ± 0.5 mV (negatively charged)

 $MNP = +20.3 \pm 0.4 \text{ mV}$ (positively charged)

- Superparamagnetism: Strong magnetic response with low magnetic fields
- Easy removing by a magnetic field
- Fe₃O₄ nanoparticles are environmental friendly, naturally present

X-ray powder diffractograms from representative MNP; YB-MNP and MNP from Database JCPDS 20-526 nanoparticles displaying the Bragg peak reflections of magnetite.

ATHENS2017

Oils removing

Fractional Factorial Design (two-layers procedure)

Experimental design varying four parameters: material, contact time, temperature and mass.

Condition	Material	Contact time	Temperature	Mass
C1	-1	-1	-1	-1
C2	+1	-1	-1	+1
C3	-1	+1	-1	+1
C4	+1	+1	-1	-1
C5	-1	-1	+1	+1
C6	+1	-1	+1	-1
C7	-1	+1	+1	-1
C8	+1	+1	+1	+1

Material -1 = YB-MNP
Material +1 = MNP
Mass -1 = 50 mg
Mass +1 = 70 mg
Contact time -1 = 2 min
Contact time +1 = 30 min
Temperature -1 = 5 °C
Temperature +1 = 45 °C

Results

D-Optimals

 3.5 ± 0.1 kg oil/kg MNP

 2.8 ± 0.3 kg oil/kg YB-MNP

 2.2 ± 0.3 kg oil/kg MNP

50

45

MNP

2

Â

50 70

30

5 45

Results

bionanocomposite) and MNP (magnetite nanoparticles).

New Motor Oil (NMO) Mixed Used Motor Oil (MUMO) Petroleum 28 °API (P28API)

Principal Components Analyses Hierarchical Components Analyses

Graphics for de complete data set of oils removal from water by the different evaluated magnetic materials.

P28API

Results

Table 1. Regression analyses for oils uptakes by magnetic materials YB-MNP (bionanocomposite of yeast biomass) and MNP (magnetite nanoparticles). Material: -1 (YB-MNP) and +1 (MNP); Contact Time: -1 (2 min) and +1 (30 min); Temperature: -1 (5 °C) and +1 (45 °C); Mass: -1 (0.05 g) and +1 (0.07 g).

Parameter			Experimental			Applied Regression Model				
Oil	Material	Mass (mg)	Temperature (⁰C)	Contact time	Maximum Experimental Mean (%)	D-Optimals	Multiple regression	MARS (Multivariate Adaptive	Neural Networks	Models Mean
		(1119)	()	(min)	(just like D- Optimal)			Regression Splines)		
NMO	+1	-1	-1	+1	89.0 ± 2.6	89.0 (0.0)	79.5 (10.7)	62.8 (29.4)	89.7 (0.8)	80.3 ± 31.3**
NINO	1	-1	-1	1	09.0 ± 2.0	r ² = 0.87	r² = 0.54	r ² = 0.87	r ² = 0.94	00.0 ± 01.0
MUMO	-1	-1	+1	+1	69.1 ± 6.2	69.1 (0.0)	66.5 (3.8)	69.1 (0.0)	68.8 (0.4)	68.4 ± 3.8**
MOMO	-1	-1	ŦŢ	ŦI	09.1 ± 0.2	r ² = 0.70	r² = 0.65	r² = 0.71	r ² = 0.86	00.4 ± 3.0
P28API	+1	-1	-1	+1	55.3 ± 8.2	55.7 (0.7)	48.8 (11.8)	38.1 (31.1)	57.5 (4.0)	50.0 ± 33.5**
FZOAFI	+1	-1	-1	ŦŢ	55.5 ± 0.2	r ² = 0.82	r ² = 0.62	r ² = 0.82	r ² = 0.90	50.0 ± 55.5
	Mean	NMO + MU	MO + P28API		71.1 ± 9.8*	71.3 ±0.7**	64.9 ± 16.4**	56.7 ± 42.8**	72.0 ± 4.1**	
*	Standard Err	or, **Propa	gated Error							

Our conclusions

- Temperature was the most significant parameter for improve oils removal capacities. However, contact time and magnetic material are also important.
- Greater contact time and smaller masses of magnetic materials improve oil removing.
- The oil characteristics affect its removal from water by this proposed method.
- The cluster analysis showed that the temperature increasing turns the behavior of the other oils similar to MUMO (from C5, temperature = 45°C).
- The theoretical models satisfactorily fitted experimental data, denoting the capacity of explanation of the observed phenomena.
- Bionanocomposite reduces de cost with reagents to produce magnetite nanoparticles maintaining the desired magnetic characteristic.

We are grateful to

SÃO PAULO RESEARCH FOUNDATION

Conselho Nacional de Desenvolvimento Científico e Tecnológico

UNESPetro

Group of Applied Chemical Analyses

ATHENS2017

Geórgia Labuto

e-mail: geolabuto@gmail.com

The qualitative behavior of the size-dependent coercivity of magnetic particles. The magnetic behavior of superparamagnetic (SPM) nanoparticles is demonstrated by the solid line, while ferromagnetic (FM) particles are presented by dashed lines. Here H denotes the applied magnetic field strength and M is the measured magnetization. Superparamagnetism occurs in particles with sizes smaller than the superparamagnetic limit.

ÓLEOS						
Tipo de Óleo	SAE 90	25W-60	SAE 50	20W-50		
Tipo de Oleo	Óleo Original	LUBRAX	LUBRAX	LUBRAX		
Marca		Petrobras	Petrobras	Petrobras		
GRAU SAE	90	25W-60	SAE 50	20W-50		
GL		-	-	-		
Densidade a 20/4oC		0,8983	0,8997	0,8846		
Ponto de Fulgor (VA) (°C)		240	272	240		
Ponto de Fluidez (°C)		-21	-6	-24		
Viscosidade a 40°C (cSt)	180	267,7	226,2	183,7		
Viscosidade a 100°C (cSt)	13,5 - 24,0	25,18	19,4	20,8		
Índice de Viscosidade		121	97	134		

