bio-oil produced from composted lignocellulosic biomass

D. Kpogbemabou, R. Beauchet, L. Pinard, L. Lemée

laurent.lemee@univ-poitiers.fr
Climate change

The earth’s atmosphere is growing warmer due to GHG emissions generated by human activity.

-gradually stop using fossil resources for energy
- increase the use of renewable energy

186 industrialized countries committed to reduce GHG emissions
Alternative to fossil fuel

• First-generation biofuels
 - Esters (bio diesel) from seed oil
 - Bioethanol from cereals and sugar crops

Conflict with human food chain

• Second-generation biofuels

produced from agricultural waste, non food crops, forest residue
Biomass potential

Represents 236 million toe in EU

13 % of EU primary energy needs (1.8 billion toe in 2020)

80 % of the biomass is ligno-cellulosic biomass
difficult to convert due to high O content
Lignocellulosic biomass to biofuel

High quality bio-oil:

- High Heating Value (HHV) > 40 MJ.Kg⁻¹
- Oxygen content < 6% dry weight
- Hydrogen/Carbon > 1.5

$$HHV = 0.03383 \text{ wt } \%(C) + 1.422 \text{ wt } \%(H) - \text{ wt } \%(O)/8$$
Hydroliquefaction

Heated H₂ pressurised reactor

Gas (CO, CO₂)
water
Residue

- depolymerisation
- deoxygenation
- hydrogenation
Objective

Improve the conversion of ligno-cellulosic biomass into a low oxygen content bio-oil
Operating conditions for biological pretreatment

- 85L isothermal steel made reactor
- Forced aeration
- Moisture adjusted to 60%

Initial mixture

Green waste 45%
- Straw 17%
- Wood 38%

Thermocouple (temperature)
- Air input 250 L/h
- Air output

Biomass

Metal grid

Leachate

Athens 2017
Physico-chemical parameters

T (°C)

C/N

days

O/C

H/C

Athens 2017
Chemical fractionation

- Lipids: organo-soluble
- Biomass: $\text{CH}_2\text{Cl}_2/\text{MeOH}$
- Residue: HCl
- « humic Acids »: acido-soluble
- « Humin »: alcalino-soluble
- « fulvic Acids »: HCl

Complexification of Organic Matter

Humic acids/Fulvic acids
GCMS analysis of lipids

✓: branched fatty acids (i,a C15 et C17) of bacterial origin

Branched/linear fatty acids

stabilisation after 36 days
Operating conditions for hydroliquefaction

- Temperature: 300-400 °C
- Initial H₂ Pressure: 16 bar
- Catalyst: Raney Ni
- Hydrogen donor solvent: tetralin

Beauchet et al. Hydroliquefaction of green wastes to produce fuels. Bioresource Technology (2011) 102, 6200-6207
Influence of the catalyst

- **Poor effect on** conversion rate and oil yield

\[
\text{conversion rate} = 100 \times \frac{m_{\text{biomass ash free}} - m_{\text{residue ash free}}}{m_{\text{biomass ash free}}}
\]

\[
\text{oil yield} = 100 \times \frac{m_{\text{biooil}}}{m_{\text{biomass ash free}}}
\]

- **Increase the hydrogen transfer**: lower O% and best HHV for 400°C
Influence of the composting pretreatment

- **Low impact on** conversion rate ~ 90%; Oxygen content ~ 8%, HHV ~ 39 MJ/kg

- **High impact on** oil yield, hexane soluble fraction and hydrocarbons distribution
Bio oil from humic substances

Humin: up to 78% of composted biomass
Good conversion rate
Leads to highest oil and alkanes amount

emee et al. Evaluation of humic fractions potential to produce bio-oil through catalytic hydroliquefaction, Bioresource Technology (2013) 149, 465-469
Conclusion

1. The combination of biological pretreatment and hydroliquefaction of lignocellulosic biomass leads to good quality bio oil.

2. Best conditions for hydroliquefaction:
 - 380° C
 - Raney Ni
 - 15 min.

3. Influence of biological pretreatment:
 - Oil yield increase with composting time
 - Maximum soluble fraction for 22 days
 - Distribution of alkanes similar to fossil fuel

4. Humin increases with biodegradation represents the Best compromise in term of reactivity, quantity and quality of bio oil.

Athens 2017
Thanks for your attention