5th International Conference on Sustainable Solid Waste Management ATHENS**2017**

Advanced Treatment of Pistachio Processing Industry Wastewater by Fenton Process

S. Bayar, T.M. Massara, R. Boncukcuoglu, O.T. Komesli, E. Katsou

CONTENTS

Introduction

Objectives

Materials & Methods

Results

Conclusions

INTRODUCTION

Pistachio industry = rapidly developing in Turkey

Estimated yield in Turkey = 44 thousand tons (2015) →

3rd biggest producer in the world

Pistachio industry water consumption: up to 6 tons of clean water

Pistachio processing industry wastewater (**PPIW**):

- components not easily biodegradable
- high chemical oxygen demand (COD)
- high total organic carbon (TOC)
- high total phenol (TP)
- high toxic organic impurities content

Advanced oxidation processes (AOP)→ Fenton oxidation:

- √ organic substances
- √ toxicity reduction
- √ preliminary treatment step before biological treatment
- √ colour removal

INTRODUCTION

Fenton oxidation

- •reaction of peroxodyne (mostly hydrogen peroxide: H_2O_2) with iron ions to form active oxygen types
- •hydroxyl radicals (OH•) formation under low pH (2-6) & reducing conditions
- •OH• attack organic matter & breaks down pollutants
- •H₂O₂ presense: continuous recycle between Fe⁺² & Fe⁺³

$$Fe^{+2} + H_2O_2 \to Fe^{+3} + OH^{\bullet} + OH^{-}(1)$$

$$Fe^{+2} + OH^{\bullet} \to Fe^{+3} + OH^{-}(2)$$

$$Fe^{+3} + H_2O_2 \to Fe^{+2} + HO_2^{\bullet} + H^{+}(3)$$

$$Fe^{+3} + HO_2^{\bullet} \to Fe^{+2} + O_2 + H^{+}(4)$$

$$H_2O_2 + OH^{\bullet} \to HO_2^{\bullet} + H_2O(5)$$

$$Fe^{+2} + OH \stackrel{\bullet}{\longrightarrow} Fe^{+3} + OH^{-}(2)$$

$$Fe^{+3} + H_2O_2 \rightarrow Fe^{+2} + HO_2^{\bullet} + H^+ (3)$$

$$Fe^{+3} + HO_2^{\bullet} \rightarrow Fe^{+2} + O_2 + H^+(4)$$

$$H_2O_2 + OH^{\bullet} \rightarrow HO_2^{\bullet} + H_2O(5)$$

OBJECTIVES

i) examine Fenton oxidation efficiency for lab-scale treatment of wastewater from the processing of red peppered pistachio nuts

ii) define optimal treatment operating conditions (e.g. pH, Fe^{+2} dosage, H_2O_2 concentration & reaction time)

MATERIALS & METHODS

o Wastewater: industrial facility with average daily processing capacity=24 tonnes of peanuts day-1

Parameter	Units	Value
Conductivity	(μs cm ^{-l})	4,750 – 5,750
Turbidity	(NTU)	150-250
рН	-	5-5.5
COD	(mg L ⁻¹)	15,000-18,000
тос	(mg L ⁻¹)	5,000-5,500
TP	(mg L ⁻¹)	3,800-4,500
Oil-Grease	(mg L ⁻¹)	50-59
CI	(mg L ⁻¹)	600-650

Experimental set-up for lab-scale Fenton oxidation treatemnt of PPIW

Effect of Fe⁺² concentration on the system performance

$$Fe^{+2} + H_2O_2 \rightarrow Fe^{+3} + OH^{\bullet} + OH^{-}(1)$$

$$Fe^{+2} + OH \xrightarrow{\bullet} Fe^{+3} + OH^{-}(2)$$

$$Fe^{+3} + H_2O_2 \rightarrow Fe^{+2} + HO_2^{\bullet} + H^+ (3)$$

$$Fe^{+3} + HO_2^{\bullet} \rightarrow Fe^{+2} + O_2 + H^+(4)$$

$$H_2O_2 + OH^{\bullet} \rightarrow HO_2^{\bullet} + H_2O(5)$$

- olst reaction rate important for determining the efficiency & process cost of Fenton process
- oEffect of Fe⁺² concentration: 6 different Fe⁺² concentrations tested from 0.26-1.56 gr L⁻¹
 - •Theoretically calculated 19.2 gr L⁻¹ H₂O₂ concentration constant
 - •No adjustment of the PPIW pH

Effect of Fe⁺² concentration on the system performance

Effect of Fe⁺² concentration on the system performance

$$Fe^{+2} + H_2O_2 \rightarrow Fe^{+3} + OH^{\bullet} + OH^{-}(1)$$

$$Fe^{+2} + OH \xrightarrow{\bullet} Fe^{+3} + OH^{-}(2)$$

$$Fe^{+3} + H_2O_2 \rightarrow Fe^{+2} + HO_2^{\bullet} + H^+ (3)$$

$$Fe^{+3} + HO_2^{\bullet} \rightarrow Fe^{+2} + O_2 + H^+(4)$$

$$H_2O_2 + OH^{\bullet} \rightarrow HO_2^{\bullet} + H_2O(5)$$

- \circ ↑ Fe⁺² concentration \rightarrow OH $^{\bullet}$ consumption (reaction 2)
 - → removal efficiency↓

 \circ excessive Fe⁺²: H₂O₂ conversion to H₂O

$$Fe^{-2} + H_2O_2 + 2H^- \rightarrow 2Fe^{-2} + H_2O_2$$

Effect of the H_2O_2 concentration on the system performance

o H_2O_2 : production source of OH $^{\bullet}$ →most significant factor limiting process efficiency

 \circ Unused H₂O₂: positive intervention in COD analyses

H₂O₂ optimal value essential for treatment efficiency + minimized cost

- o Effect of 6 different H₂O₂ concentrations from 3.2-22.4 gr L⁻¹ tested
 - Optimal Fe⁺² concentration (1.3 gr L⁻¹)
 - No adjustment of the PPIW pH

Effect of the H_2O_2 concentration on the system performance

↑ the H₂O₂
concentration
up to 19.2 gr L⁻¹:
↑ removal
efficiencies

H₂O₂ addition effect less important

Effect of the H_2O_2 concentration on the system performance

 $H_2O_2 \equiv \text{production source of OH}^{\bullet}: H_2O_2 \text{ concentration } \uparrow \rightarrow OH^{\bullet} \uparrow$

- \circ H₂O₂ = radical scavenger at higher concentrations
- HO₂• formation (lower oxidation capacity)
- OH• radicals consumption $\rightarrow \downarrow$ removal efficiency

Effect of initial PPIW pH on system variables

- \circ Fenton process: strongly pH-dependent (interaction between Fe⁺² & H₂O₂)
- o PPIW treatment via Fenton oxidation: usually in pH 2-6
- o pH>6 recommended due to Fe⁺² precipitation

(Fe⁺²:1.3 gr L⁻¹, H₂O₂: 19.2 gr L⁻¹)

OH• production ↓ & H+ = OH• radical scavenger =

$$OH$$
 $^{+}H^{-}+e^{-}\rightarrow H.O$

 H_2O_2 forms $O_2 \& H_2O$: oxidation activity \downarrow

Reaction time effect

Under optimum conditions (Fe⁺²:1.3 gr L⁻¹, H₂O₂: 19.2 gr L⁻¹, initial PPIW pH=3):

Analyses: 99% of added H₂O₂ already consumed after 30 min!

CONCLUSIONS

Optimum conditions determined as:

- pH=3
- 1.3 gr L⁻¹ Fe⁺²
- 19.2 gr L⁻¹ H₂O₂
- 60 min of reaction time

- o COD removal=79.9%
- TOC removal=54%
- TP removal=88.7%

- √ Fenton oxidation=effective treatment for PPIW
- ✓ Potential pre-treatment for wastewaters with high organic content

THANK YOU FOR YOUR ATTENTION