

Information and Communication Technologies for Complex Industrial Systems and Processes

INSTITUTE OF COMMUNICATION, INFORMATION AND PERCEPTION TECHNOLOGIES

EVALUATION OF INTERNAL SLAG REUSE IN AN ELECTRIC STEELMAKING ROUTE: SIMULATION ANALYSES THROUGH THE EIRES MONITORING TOOL

<u>Ismael Matino</u>¹, Valentina Colla¹ Stefano Baragiola²

Management

¹ Scuola Superiore Sant'Anna – TeCIP Institute – ICT-COISP, Italy ² RIVA ACCIAIO S.p.A., Italy

Content

1. Introduction

2. EIRES General Purpose Monitoring Tool

3. Simulation of internal reuse of slags

4. Conclusions

2.

3.

EIRES General Purpose Monitoring Tool

EIRES Tool - Aspen[®]-based Simulation Tool

EIRES Tool - Aspen[®]-based Simulation Tool

Production process model

INPUTS

OUTPUTS

2.	<text></text>	EAF			Other Output	
		Scrap Charge (different scrap types)	Unit Operati	Output for KPIs		
		Non-Scrap Charge (e.g. lime, anthracite)	on			
		Burners (natural gas, oxygen)				
		Other additions (blowing graphite, oxygen)		Electric Energy (or Temperature after melting)	Mass of Steel Temperature of Steel Composition of Steel (also H ₂ content) Composition of Slags Mass and Composition of Fumes and Dusts before the fumes treatment	
		Fe-Alloys during tapping		Chemical Energy		
		Temperature after melting (or EAF electric power)	EAE	Energy from Burners		
		Time of EAF Power ON	EAF			
		LF		EAF Slay		
		Ee-Allovs		Metallic Charge		
		Argon Volume Flow		Flectric Energy (or		
		Temperature input in VD/CC (or LF electric power)		Temperature input in VD/CC)		
		Time of LF Power ON	LF	LF slag		
		VD		Metallic Charge		
		VD Pressure		Non-Metallic Charge		
		Argon Volume Flow	VD			
		cc	CC	Desired Steel		
		Fe-Allovs after VD and before CC		Output for KPIs		
		T before starting casting				

4. Conclusions

Simple **MS Excel® sheets** linked to the model by Aspen Simulation Workbook® represent the human machine interface (**HMI**) of the model

2. EIRES General Purpose Monitoring Tool

3. Simulation of internal reuse of slags

EIRES Tool – KPI Tool

KPI tool allows:

 providing the values of some defined Key Process Indicators (KPIs) → evolution of the environmental, energy and resources performance of the steelworks during common process or in case of modifications

 obtaining global indexes → global view of the sustainability of the steelworks

KPIs computed in this study:

- KPI₂ required electric energy (ratio between the electric energy consumed in steel production and the amount of produced steel);
- KPI₁₂ specific non-metallic charge materials (ratio between weight of non-metallic charge materials and the amount of produced steel);
- KPI₁₄ metallic yield (percentage ratio between produced steel and the amount of metallic charge);
- KPI₁₅ specific EAF slag (ratio between the amount of EAF slag and the amount of produced steel);
- KPI₁₈ specific LF slag (ratio between the amount of LF slag and the amount of produced steel);

Conclusions
KPI₂₁ total amount of slag (ratio between the total amount of produced slags and the amount of produced steel).

Simulation of internal reuse of slags

Simulations were carried considering **one of the most produced steel family** in the considered steel plant

2.	EIRES	Steel Alloy Content [wt %]							
	General Purpose	С	Si	Mn	Cr	Ni	В		
	Monitoring	0.12÷ <u>0.25</u>	≤0.5	0.9÷ <u>1.6</u>	≤0.25	≤0.25	≤0.0008		
3.	Tool Simulation of internal reuse of slags	Si	mulations (100% 80% 60% 20% 0%	EAF Slag	LF Slag AL203 % MGO • Other	and LF sla	igs'		
4.	Conclusions	Slags	appear va l	lid substitu	utes for so	me raw ma	aterials		
é	ATHENS2017						Í Í		

Simulation of internal reuse of slags

Replacement of lime and dolime by total LF slag recovery (CS 1)

2. EIRES General Purpose Monitoring Tool LF was completely reused in the process but only a part of lime/dolime was replaced

Replacement of lime and dolime by total LF slag recovery and partial recovery of EAF slags (CS 2)

• EAF slag was added to LF slag in order to completely replace the lime/dolime

Conclusions

Simulation studies were carried out through a general-purpose monitoring tool

2. EIRES General Purpose Monitoring Tool

3. Simulation of internal reuse of slags

For one of the most produced steel family, simulated slags appear having high amount of valuable compounds (e.g. CaO, MgO)

The replacement of lime/dolime was evaluated by reusing LF slag with or withouth EAF slag

> LF slag could be a good material to replace partially lime and dolime, while maintaining a good steel quality and yield

EAF slags addition into the process appears a not economically and environmentally solution

4. Conclusions

Introduction 1.

Conclusions

2. **EIRES** General **Purpose Monitoring** Tool

3. Simulation of internal reuse of slags

The followed approach provides useful indications and information on non-standard scenarios preliminary to real plant implementation

> An early identification of most promising solutions is possible

> > **Risky and economically cumbersome plant** trials related to non-viable options can be avoided

Conclusions

Conclusions

Acknowledgments

The work described in the present paper was developed within the project entitled "EIRES – Environmental Impact Evaluation and Effective Management of Resources in the EAF Steelmaking" (Contract No. RFSR-CT-2013-00030), and received funding from the Research Fund for Coal and Steel of the European Union, which is gratefully acknowledged.

The sole responsibility of the issues treated in the present paper lies with the authors; the Union is not responsible for any use that may be made of the information contained therein.

thank you!

e-mail: <u>i.matino@sssup.it</u> <u>colla@sssup.it</u> <u>qualita.milano@rivagroup.com</u>

21-24 June 2017