

Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, Greece

5th International Conference on Sustainable Solid Waste Management, Athens, 21–24 June 2017 ATHENS2017

Optimization of a green method for the recovery of polyphenols from onion solid wastes

<u>I. Mourtzinos</u>, A. Ignatiadis, K. Topalidou, S. Grigorakis, D. Makris, T. Moschakis and C. G. Biliaderis

Exploitation of plant by-products by the food industry

Food production

(raw materials, final products)

Food waste or by-products

(leaves, roots, seeds)

Phytochemicals

(antioxidants, antimicrobials)

Extraction of phytochemicals with conventional and non-conventional techniques

Production of functional - novel food products

onion solid wastes

Onion polyphenols

Quercetin

Anthocyanin

Onion leaves

Contain polyphenols, inulin

Quercetin content (mg/100g)

Glycerol as co-solvent

Low cost, by-product of bio-diesel industry

Low dielectric constant

Ideal solvent for polyphenol extraction

Cyclodextrins

RO₆

RC

Formation of inclusion complexes with polyphenols

Aqueous solutions of cyclodextrins can be used as extraction co-solvents

R=H: β-CD R=CH₃-CH(OH)-CH₂: HP-β-CD, DS=0.5-1.3

OR

Protection against oxidation and increased stability of the ligand

Aim of the study

Optimization of an extraction process for efficient recovery of polyphenols from onion solid waste, using 'green'' water/glycerol/2-hydroxypropyl-β-cyclodextrin ternary mixtures

It was based on a Box-Behnken experimental design

Experimental values and coded levels of the independent variables used

Independent variables	Code units	Coded variable level		
		-1	0	1
$C_{ ext{CD}}$ (%,w/v)	X_1	1	7	13
$C_{ m gl}(\%,{ m w/v})$	X_2	0	30	60
$T(^{\circ}\mathrm{C})$	X_3	40	60	80

Measured and predicted values of **YTP** and **AAR**, determined for individual design points, for the extractions performed with water/glycerol mixtures

Design	Inc	Independent variables		Response (Y _{TP} , mg GAE g ⁻ ¹ dw)		Response (A _{AR} , μmolTF dw)	
point	V						
	X1	X2	X3	Measured	Predicted	Measured	Predict
1	-1	-1	-1	9.69	7.61	222.55	216.75
2	-1	-1	1	18.96	18.37	202.14	201.98
3	-1	1	-1	14.42	17.52	251.23	238.82
4	-1	1	1	56.78	55.10	311.49	316.14
5	1	-1	-1	19.51	20.74	235.67	231.96
6	1	-1	1	20.6	17.05	207	220.35
7	1	1	-1	22.05	22.19	276.5	277.60
8	1	1	1	43.69	45.317	351.35	358.09
9	-1	0	0	22.24	23.49	183.18	196.90
10	1	0	0	24.6	25.16	242.96	225.47
11	0	-1	0	30.24	35.23	276.5	272.82
12	0	1	0	57.51	54.32	352.81	352.72
13	0	0	-1	23.15	20.76	249.28	270.09
14	0	0	1	33.51	37.70	327.53	302.95
15	0	0	0	40.42	36.42	269.7	276.38
16	0	0	0	36.05	36.42	275.53	276.38

Polynomial equations and statistical parameters describing the effect of the independent variables considered on the responses (Y_{TPm}) and (A_{AR})

Response	Polynomial equation	R ²	р
Y _{TPm}	2.65 + 0.38X1 + 0.31X2 + 0.15X3 - 0.21X1X2	0.94	0.0056
A _{AR}	245.87 + 13.17X1 + 36.49X2 + 14.80X3 + 21.22X2X3 - 46.46X1 ² + 32.75X2 ²	0.95	0.0037

Contour plots illustrating the effect of the independent variables examined on the YTPm

 $C_{CD} = 13\% \text{ w/v, } C_{gl} = 60\% \text{ w/v, } T = 80^{\circ}C$

Contour plots illustrating the effect of the independent variables examined on the AAR

 $C_{CD} = 8\% \text{ w/v, } C_{gl} = 60\% \text{ w/v, } T = 80^{\circ}C$

Prediction profiler displaying the overall desirability of the model, following adjustment of the independent variables at their optimal values

LC –	MS	ana	lysis
------	----	-----	-------

<u>Peak</u>	<u>Rt (min)</u>	<u>λ_{max} (nm)</u>	[<u>M+H]</u> +	<u>Other ions</u>	<u>Compound</u>
				<u>(m/z)</u>	
1	8.88	292	153	-	Unknown
2	13.06	258, 292	587	487, 325	Unknown
3	13.58	292	319	337	2-(3,4- dihydroxybenzo yl)-2,4,6- trihydroxybenzo furan- 3(2H)-one
4	18.75	292, 514	449	-	Cyanidin 3-O- glucoside
5	22.30	254, 374, 522	535	441, 287	Malonylated cyanidin 3-O- glucoside derivative
6	26.61	292	l		Unknown
7	27.80	252, 320(s), 366, 384(s)	465	303	Quercetin glucoside
8	30.70	256, 318(s), 368, 3929(s)	303		Quercetin
9	32.45	256, 304, 368	765	603, 303	Quercetin glucoside / quercetin dehydrate adduct
10	33.61	248, 270(s), 304(s), 364	765	303	Quercetin glucoside / quercetin dehydrate adduct
11	34.85	248, 268(s), 304, 364	603	303	Quercetin dimmer
12	36.88	242, 272(s), 304, 362	603	303	Quercetin dimmer
13	37.86	240, 300, 360	601	303	Quercetin dehydrodimer

Incorporation in a yogurt matrix

Incorporation in yogurt

Quality Characteristics of yogurt						
Solids content %	Colour	Complex Viscosity (Pa.s)	Storage modulus, G' (Pa)	Loss modulu s, G" (Pa)	tanδ	
15	L*69,79 a +13,98 b +11,70	156	10 ³	3x10 ²	0.3	

Spectrophotometric test	Value	marine Burgers	
Total polyphenol yield (Y _{TP})	1157 mg gallic aci	d /L of extract	and the state of the
Antiradical activity (A _{AR})	1609 mM Trolox		
			itsp-smg.
			Statute Contract
			A bilizers

Conclusions

- Development of a novel approach for more efficient extraction of polyphenols from onion solid wastes, leading to eco-friendly extracts and processes.
- Green-extraction techniques minimize the use of petrochemicals.
- Liquid extracts of plant polyphenols could become attractive and safe vehicles of these compounds to fortify food products or used as natural food colourants.
- Extracts should be also tested for their stability upon storage to maximize their effectiveness in providing functionality in a real food matrix.

Thank you for your attention

