SULFIDE EFFECT ON BIOGAS UPGRADING WITH A BIOELECTROCHEMICAL SYSTEM

CHRISTY DYKSTRA
SPYROS G. PAVLOSTATHIS

School of Civil & Environmental Engineering
Georgia Institute of Technology
Atlanta, GA 30332-0512, USA
spyros.pavlostathis@ce.gatech.edu

ATHENS 2017
5th International Conference on Sustainable Solid Waste Management
Athens, Greece, June 22, 2017
INTRODUCTION & BACKGROUND

Anaerobic Digestion

Methane CH_4

Carbon Dioxide CO_2

Trace Gases (e.g., H_2S, H_2, N_2)

Biogas Yield (L/kg volatile solids)a

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Biogas Yield (L/kg volatile solids)a</th>
<th>Methane Content (%, v/v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat</td>
<td>1,000 – 1,250</td>
<td>70 – 75</td>
</tr>
<tr>
<td>Protein</td>
<td>600 – 700</td>
<td>68 – 73</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>700 – 800</td>
<td>50 – 55</td>
</tr>
</tbody>
</table>

aAt 25°C, 1 atm; Petersson and Wellinger, 2009. IEA Bioenergy.
Biogas Upgrading

- Absorption
 - Physical
 - Chemical
- Adsorption
 - Activated Carbon
 - Alumina
 - Zeolite
- Membranes
 - Gas separation
 - Gas adsorption
- Cryogenics
- Biological
 - Biomass Production (e.g., algae)
 - Bioelectrochemical Systems

- Energy intensive
- Carbon waste product
- Expensive consumables

Direct conversion of CO₂ to CH₄
BIOELECTROCHEMICAL SYSTEMS

Oxidation

Organics \rightarrow CO$_2$/oxidized organics, H$^+$, e$^-$

Reduction

CO$_2$, H$^+$, e$^-$ \rightarrow CH$_4$

- Microbes are an inexpensive, self-renewing catalyst
- The potential applied at A (< 1 V) can be supplied by photovoltaics/renewables
- Optional proton exchange membrane, B
HYDROGEN SULFIDE

- Corrosive, toxic (NIOSH, IDLH = 100 ppm)
- Produced by sulfate-reducing bacteria during anaerobic digestion
- Inhibitory to methanogenesis during anaerobic digestion [1]
- Feedstock C:S ratio predicts biogas H_2S [2]

<table>
<thead>
<tr>
<th>Feedstock</th>
<th>C/S (g/g)</th>
<th>Theoretical Biogas H_2S (%)</th>
<th>range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grease trap waste</td>
<td>798</td>
<td>0.0 – 0.1</td>
<td></td>
</tr>
<tr>
<td>Biological sludge</td>
<td>59</td>
<td>0.6 – 1.9</td>
<td></td>
</tr>
<tr>
<td>Industrial WW biological sludge</td>
<td>46</td>
<td>0.8 – 2.0</td>
<td></td>
</tr>
<tr>
<td>Pig bristles</td>
<td>19</td>
<td>2.0 – 4.9</td>
<td></td>
</tr>
<tr>
<td>Harvested green seaweed</td>
<td>7</td>
<td>5.5 – 17.7</td>
<td></td>
</tr>
</tbody>
</table>

RESEARCH OBJECTIVE
Determine how the presence of hydrogen sulfide (H\textsubscript{2}S), a common contaminant in anaerobic digester biogas, affects the conversion of carbon dioxide (CO\textsubscript{2}) to methane (CH\textsubscript{4}) in the cathode of a bioelectrochemical system (BES).

RESEARCH APPROACH
- Compare the mean initial 3-day CH\textsubscript{4} production rate following feeding
- Assess the effect of H\textsubscript{2}S on the full BES performance

Figure 1. Linear biocathode CH\textsubscript{4} production during the first 3 days of a feeding cycle
METHODS: BIOELECTROCHEMICAL SYSTEM

Anode
- 300 mL total, 250 mL liquid volume
- Carbon felt electrode with exoelectrogens
- Batch-fed acetate (4 g COD/L) weekly

Cathode
- 300 mL total, 250 mL liquid volume
- Carbon felt electrode with methanogens and SS collector
- Batch-fed CO$_2$ (g) (92 mL at 22°C, 1 atm) weekly
- Applied potential -0.8 V vs. SHE with Gamry Interface 1000 potentiostat
 - Continuously mixed with magnetic bars and stir plates at 22°C
 - Nafion 117 proton exchange membrane (PEM)
RESULTS: BIOCATHODE CH₄ PRODUCTION

- H₂S improves biocathode CH₄ production rate up to 2-3% initial H₂S
- Initial H₂S concentrations of 4-6% result in a decreased biocathode CH₄ production rate

- **Two competing effects:**
 - **Depress CH₄ production (≥4% H₂S):** Inhibition of methanogens?
 - **Improve CH₄ production (≤3% H₂S):** What is/are the process(es) involved?

Figure 2. Mean initial 3-day biocathode CH₄ production rates following feeding with an initial headspace concentration of 0-6% H₂S (n, number of feeding cycles).
CE, Coulombic Efficiency: The ratio of total Coulombs actually transferred to the anode from the substrate, to maximum possible Coulombs if all substrate removal produced current. \(^1\)

CCE, Cathode Capture Efficiency: The ratio of total Coulombs actually transferred to the \(\text{CH}_4\) from the cathode, to maximum possible Coulombs if all current produced \(\text{CH}_4\). \(^2\)

\(^1\) Logan et al., 2006. ES&T
\(^2\) Villano et al., 2013. Bioresource Technol.
H₂S WITHIN A METHANOGENIC BES

Henry’s Law constant in catholyte medium
- CO₂: 32.7 mM/atm
- H₂S: 82.0 mM/atm
H₂S is the most toxic of the sulfide species.

H₂S IN THE CATHODE – INHIBITORY EFFECT

H₂S, CH₄, and CO₂ react to form HS⁻ and S²⁻.
H₂S IN THE CATHODE – INHIBITORY EFFECT

The methanogenic biocathode is semi-protected from sulfide inhibition by biofilm formation and a local high pH at the cathode surface.
H₂S IN THE ANODE – ENHANCEMENT EFFECT

- Low H₂S → more electrons donated to the anode → more biocathode CH₄ production
- High H₂S → stimulate SRB cycle → divert acetate eeq from the anode → less biocathode CH₄ production
H₂S IN THE ANODE – ENHANCEMENT EFFECT

- Low H₂S → more electrons donated to the anode → more biocathode CH₄ production
- High H₂S → stimulate SRB cycle → divert acetate eq from the anode → less biocathode CH₄ production

<table>
<thead>
<tr>
<th>Initial Cathode H₂S (%)</th>
<th>Acetate Removal (%)</th>
<th>Final Anode H₂S (%)</th>
<th>H₂S Recovery as Anode SO₄²⁻ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>91.4</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>99.6</td>
<td>0.18</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>91.7</td>
<td>0.17</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>91.0</td>
<td>0.20</td>
<td>18</td>
</tr>
</tbody>
</table>

Potential anode H₂S oxidation products:
- S⁰, Sₓ²⁻, S₄O₆²⁻, S₂O₃²⁻, SO₄²⁻

Sun et al., 2009. ES&T
Biocathode H₂S Removal

<table>
<thead>
<tr>
<th>Initial Cathode H₂S (‰)</th>
<th>Acetate Removal (‰)</th>
<th>Final Anode SO₄²⁻ (mM)</th>
<th>H₂S Recovery as Anode SO₄²⁻ (‰)</th>
<th>Final H₂S in Catholyte (mM)</th>
<th>Final H₂S in Cathode Gas (‰)</th>
<th>H₂S Removal Efficiency (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>91.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>99.6</td>
<td>0.18</td>
<td>24</td>
<td>0.47</td>
<td>0.5</td>
<td>84.6</td>
</tr>
<tr>
<td>5</td>
<td>91.7</td>
<td>0.17</td>
<td>18</td>
<td>0.63</td>
<td>0.7</td>
<td>83.4</td>
</tr>
<tr>
<td>6</td>
<td>91.0</td>
<td>0.20</td>
<td>18</td>
<td>0.81</td>
<td>1.0</td>
<td>83.2</td>
</tr>
</tbody>
</table>
CONCLUSIONS

• Up to 3-4% H₂S in biogas can enhance biocathode CH₄ production by contributing electrons to the anode

• Above 4% H₂S, biocathode CH₄ production decreases due to: i) inhibition of methanogens at the cathode; ii) sulfide oxidation cycling in the anode, which diverts electron equivalents away from CH₄ production
This material is based in part upon work supported by the US National Science Foundation Graduate Research Fellowship under Grant No. DGE-1148903 (2012 to 2017) awarded to Christy M. Dykstra, who was also awarded the Canham Graduate Studies Scholarship by the Water Environment Federation (2016) and the Georgia Power Fellowship (2017).
METHODS: ANALYTICAL

- Gas pressure → Pressure transducer
- Gas composition → Gas chromatography (GC) with Thermal Conductivity Detector (TCD)
- Acetate → GC with Flame Ionization Detector (FID)
- Dissolved CO₂, H₂S → Sample acidification (6 N H₂SO₄) followed by composition analysis of evolved gas (conditional calibration)
- Voltage
- Current
- Cyclic Voltammetry → Handheld multimeter and Gamry Interface 1000 potentiostat
RESULTS: SERUM BOTTLE TESTS

• Cathode inoculum: hydrogenotrophic, methanogenic, suspended growth culture fed with H₂/CO₂ (80:20) and catholyte medium with vitamins and trace metals

• Similar methane production at all initial gaseous H₂S concentrations up to 3% H₂S