

5th International Conference on Sustainable Solid Waste Management 21-24.06.2017. Athens, Greece

Valuable products from End of Life Vehicles (ELV) waste by thermal and thermo-catalytic degradation

J. Sója, N. Miskolczi and R. Nagy

MOL Department of Hydrocarbon and Coal Processing University of Pannonia Veszprém, 10 Egyetem street, 8200, Hungary sojajanos@almos.uni-pannon.hu

Driving forces

Problem: amount of plastics waste is increasing!

Solution:

Directives:

- <u>94/62/EC EU Directive</u>: 50-65 % of the packaging waste has to be utilized, even with burning, while 25-45 % of it has to be processed by chemical- or mechanical proceeding.
- <u>2000/53/EK Community Directive</u>: From 1 January 2015 95% of the waste coming from vehicles' construction material has to be utilized, 85 % in mechanical and 10 % in chemical recycling.

Pyrolysis/cracking definition

thermal decomposition of organic material at high temperature in the absence of oxygen

involves chemical change of chemical composition and physical phase

Main aims

To investigate the properties and the effect of 5 different catalysts.

Catalyst properties

http://www.explainthatstuff.com/zeolites.html

Product distribution

http://maytop.tk/diry/gas-natrual-647.nhn

Product structure

H
$$\overset{\circ}{C}H_2 - \overset{\circ}{C}H_2 - \overset{\circ}{C}H_2 - \overset{\circ}{C}H_3$$

$$\overset{\circ}{C} = \overset{\circ}{C}$$

$$\overset{\circ}{A}$$
H
H

 $https://en.wikipedia.org/wiki/Linear_alpha_olefin$

Construction of cracking

Reactor type	Batch reactor	
Pressure	Atmospheric	
Atmosphere	Nitrogen	
Temperature	425, 485 °C	
Cracking time	17 – 40 min	
Feedstock	ELV ("end of life vehicles")	
Catalyst concentration	5 wt%	

Raw materials

Catalysts

Catalyst	S_{BET} (m ² /g)	$S_{BJH}(m^2/g)$	\mathbf{D}_{av} (nm)
ZSM-5	355.4	90.1	1.74
Zn/ZSM-5	350.8	110.6	1.80
Mg/ZSM-5	345.3	109.2	1.80
Fe(II)/ZSM-5	354.5	111.7	1.81
Sn/ZSM-5	318.9	105.0	1.92
Ce/ZSM-5	285.4	91.9	1.79

Pyrolysis yields

- •mainly pyrolysis oils and gases
- •Sn/ZSM-5: maximum yield of pyrolysis oil and the minimum yield of gases
- •Ce/ZSM-5: lowest yield of pyrolysis oil and the highest yield of gases
- •volatile products were almost the same, only the ratios of gases and liquids changed

Gases composition

Pyrolysis oil composition

Products

Gas: 43 – 61 %

Oil: 39 – 57 %

Residue: ~1 %

• Energy recovery

- Energy recovery
- Fuel
- Chemical raw materials, eg. styrene or other plastic monomer

- Energy recovery
- Activated carbon raw material

Summarize

- •ELV recycling by pyrolysis
- •Main driving forces: waste managment & EU directives
- •Main aim: to investigate the effect of 5 zeolite based catalysts
- •Products further utilization:
 - **oMost gas: Ce/ZSM-5 (energy recovery)**
 - **OMost pyrolysis oil: Sn/ZSM-5 (fuel)**
 - **➤**Most aromatics compound: Fe(II)/ZSM-5 (chemical raw material)
 - ➤ Most paraffin: Mg/ZSM-5 (wax)
 - **➤**Most olefin: Fe(II)/ZSM-5 (chemical synthesis)

Acknowledgements

The authors express their gratitude to the National Office for Research and Innovation, within the framework of support for Hungarian-indian (KTIA-DST) R & D & I cooperation program (TÉT_13_DST) (TÉT_13_DST-1-2014-0003)

Thank you for your attention!