

"Nutrient recovery from biogas digestate in semitechnical scale in Northern Germany"

Authors: Tobias Gienau, M. Sc.

Dipl.-Biologe Ulrich Brüß

Prof. Dr.-Ing. Matthias Kraume

Prof. Dr.-Ing. Sandra Rosenberger

Project time: January 2014 – November 2017

Motivation Biogas plants in Germany

- In 2016 about 31.7 % of electricity consumption in Germany is based on renewable energies, 7 % on biomass energy
- Biogas plants in Germany constantly increased in number and electric capacity
- 9.000 plants with 4.200 MW_e installed power (2016)
- Development driven by "German Renewable Energy Sources Act"

2

Fig. 1: Development of German biogas plants, Fachagentur Biogas e.V. (July 2016)

Motivation Biogas plants in Germany

- In 2011, about 65,5 million m³ of anaerobic sludge from biogas plants was ejected [1]
- ightarrow 20000 25000 t/a sludge per MW $_{
 m e}$
- Nutrients are highly recommended for manuring processes [1]
 Nitrogen 1.2 – 9.1 kg/t
 Ammonia 1.5 – 6.8 kg/t
 Phosphorus 0.4 – 2.6 kg/t
 Potassium 1.2 – 11.5 kg/t

But: Local usage is limited (excess) Costs for transport (50-150 km):

3

• 10 – 17 €m³ digestate (N-Germany)

Fig. 2: Nitrogen load on agricultural fields, Lower Saxony [2]

Möller, K., Müller, T., 2012. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Eng. Life Sci. 12, 242–257.
 Nutrient report, Germany, Lower Saxony 2013/2014

Table of content

Motivation

- Separation technology
- Experimental set-up
- Results
- Conclusion and outlook

Fig. 3: Ultrafiltration plant Inwil- Switzerland

Separation technology Membrane based

Fig. 4: Process scheme of the membrane based total conditioning process

Separation technology Membrane based

Fig. 4: Process scheme of the membrane based total conditioning process

Process targets:

- Energy efficient separation
- Stable process during unstable condition
- Transport worthy nutrient production
- Reduction of transport effort

UF: 50 % of invest costs 50-60 % of energy costs

- 1. Liquid fertiliser: particle free, high amount of nitogen+potassium
- 2. Solid fertilser: TS > 20 %, org. nitrogen and phosphorus
- 3. Process water in high quality

Experimental set-up Screening

Analysed parameters:

- Viscosity of digestate and centrate (supernatant)
- Density of digestate and centrate
- Polysaccharides and proteins
- FOS/TAC value
- N_{total}, NH₄-N, K⁺, P₂O₅,
- Membrane performance with 40 nm ultrafiltration (Amicon)
- TS, VS...

7

digestate, centrate, retentate UF, filtrate UF

Fig. 5: Ultrafiltration test- Amicon 8200

Fig. 6: Centrifuge, 2200 g, CEPA

Experimental set-up Biogas plant

Biogas plant Northwest Germany

- 2 MW_{el} and 2 MW_{th} power
 - Feed: 50 t/d cattle manure, 50 t/d maize silage, 50 t/d crops
- Digestate output: 35,000 45,000 t/a

Local fields are limited

۲

۲

- Nitrate \rightarrow Groundwater
- Further Phosporus separation required

Experimental set-up Separation units

Container decanter centrifuge

Screw press separator 0,5 mm mesh 6-7 m³/h

Experimental set-up Separation units

Ultrafiltration unit

Reverse osmosis unit

- Ceramic Al₂O₃ membranes (50 nm)
- 7,3 m² active membrane area
- High cross-flow velocity 3 5 m/s

Fouling control

- Polymeric membrane
- 138 m² active membrane area
- 3-stage reverse osmosis for high water quality

Table of content

Motivation

- Separation technology
- Experimental set-up

Results

11

Conclusion and outlook

Abb. 4: Ultrafiltrationsanlage in Inwil (Schweiz)

Results Screening

12

Digestate:		Parameter	Unit	Average
				N = 15
٠	High viscous, fibre rich, organic material	TS	wt%	7.6 ± 2.4
•	TS = 5 – 10 % with ¾ VS	VS	wt% of TS	71.9 ± 5.0
•	Water density Centrifugation	Density	kg⋅m ⁻³	997 ± 28
		pН		7.8 ± 0.2
After centrifugation (RZB = 3.500 g):		Parameter	Unit	Average
				N = 15
•	moderate viscous, fibre free, organic	TS	wt%	3.1 ± 1.2
	material	VS	wt% of TS	62.6 ± 7.4
•	TS = 2 – 4 % with 2/3 VS	Density	kg⋅m ⁻³	1017 ± 5.0
•	Water density but not water viscosity	pН		7.8 ± 0.2

Results Screening

Viscosity-Screening:

- Viscosity after centrifugation is factor 10 – 100 higher than water (Non-Newtonian)
- Water viscosity = 0.001 Pa·s
- Average viscosity after centrifugation (Shear rate =1000 s⁻¹) → 0.014 Pa·s
- Strong diviation for the analysed samples → feeding strategy is very different

Fig. 7: Viscosity at 20 °C with double-gap rheometer Anton Paar MCR 101

Results Screening

Membrane-Screening

Fig. 8: Ultrafiltration flux at 20 °C, $\Delta p = 1$ bar, stirrer 120 min⁻¹, Amicon 8200 (40 nm)

- High viscosities correlate with low ultrafiltration flux $(1 2 L \cdot m^{-2} \cdot h^{-1})$
- Bio-waste digestates are subjected to have higher flux (2.5 7.5 L·m⁻²·h⁻¹)
 → lower TS, lower organic concentration and viscosity

Conclusion Screening

Screening

- <u>32 samples</u> from agricultural biogas plants and <u>11 samples</u> from bio-waste biogas plants
- Screening is necessary to understand fluid dynamics and the differences in feed and composition
- → Detailed engineering knowledge of rheological and physical behavior
- \rightarrow Scale-Up could be possible!

Fig. 9: Correlation of viscosity and organic concentration

Results Scale-Up

Results Scale-Up

Fig. 10: Concentration based retention of total solids

Water-Energy Nexus:

- Production of clean water and total reduction of organic/inorganic residues
- Production of high concentrated nutrients for direct manuring applications (N/P/K)
- Recycling of limited resources (Phosphorus)

Costs for manuring procedure and transport
10 – 17 ∉m³ digestate (Northern Germany)

Operation costs incl. investment

• 6 – 10 €m³ digestate

MINUS (3 – 4 ∉m³) [3] Price for conc. nutrients (equivalents of synth. fertilizer)

[3] Döhler et al. (2011), Effizente Gärrestaufbereitung und - Verwertung

Conclusion and outlook

4 Years of project work...

- 2,5 years of screening and optimisation of digestate and its separated fractions
- 1 year practical tests on site (Northwest Germany)
 - Separation of 1,500 m³ of digestate
 - Process water in very high quality (<15 mg/L COD, 10 mg/L NH₄⁺-N)
 - Concentrated fractions of liquid and solid fertilisers
- Now: 3 months practical tests on side (West Germany)
 - Validating experimental results
 - Optimisation of energy consumption (Target -50% of ultrafiltration unit)
- ... 2-3 months for PhD, publication...

18

Thank you very much for your kind attention!

Please feel free to ask any questions...

