

CAMPUS GROUP T LEUVEN

MSW incineration: from waste processing to combined heat and power production

Bram Verbinnen, Jo Van Caneghem KU Leuven, Campus Group T

Johan De Greef Keppel Seghers Belgium NV

Bram.Verbinnen@kuleuven.be

Evolution of MSW treatment

Landfill

Waste incineration

Waste-to-Energy

Energy from waste

- Energy from waste
 - Electricity
 - Heat, e.g. district heating
 - o Steam

- Energy efficiency dependent on:
 - Calorific value of the waste
 - Heterogeneity of the waste
 - Chemical complexity of the combustion gases
 - Legal requirements

WtE as CHP

- Not straightforward
- Challenges:
 - General energetic optimization of the process
 - Design and operational challenges for WtE as CHP
 - Annual waste throughput
 - Plant availability
 - Plant operation: flexibility vs. continuity
 - Stability of energy supply

General energetic optimization

- Optimization of process control
 - Automated waste feeding, air management, grate movement
 - →Energetic content of the waste released in most stable way possible
 - \rightarrow Stable flue gas conditions
- Lowering of excess oxygen
 - To avoid excessive cooling
 - o > 5v% at boiler outlet!

General energetic optimization

- Internal recycling of process heat
 - Primary/secondary combustion air preheating
- <u>Recovery of low-temperature heat</u>
 Flue gas T > dewpoint acids
- Increase of boiler steam parameters
 - Need for costly extra protective measures

→ Up to 10% improvement of electrical efficiency
 → Increase of R1 value above limit value of 0.60

- <u>Annual waste throughput</u>
 - Needs to be ensured continuously

- Also when no steam required by customer
 - Send additional steam to a turbine
 - Send excess heat to buffering heat network
- Needs to be incorporated in design waste-fuelled CHP plant

- Plant availability
- Customers:
 - Chemical industry, paper mills, large greenhouses, district heating, 24/7 operation
 - Require steam 100% of the time, typical WtE availability 90-95%
- Extend operation period between shutdowns
 - Redundant equipment, additional on-line boiler cleaning, more frequent technical inspections and small reparations
- Anticipate alternate downtimes of the WtE process lines

- Plant operation: flexibility versus continuity
- Different customers have different steam demands
 - Chemical industry vs. small paper mill vs. district heating
- Complex design of Rankine cycles

- Stability of energy supply
- Steam stability dependent on definition
 - Standard deviation from process value
 - Average of deviation of the process value from setpoint

WtE as CHP

- Examples
 - Great Manchester Waste Disposal, Runcorn, UK
 - 17 bar steam to INOVYN + electricity, total plant efficiency 48%
 - o Indaver site, Beveren, Belgium, Ecluse project
 - Steam network + electricity, total plant efficiency <u>+</u> 50%
 - Attero site, Moerdijk, The Netherlands
 - 100 bar, 400°C steam to Essent \rightarrow Shell, total plant efficiency 85%

Conclusions

- Electrical energy efficiency of WtE plants is low due to properties inherent to waste
- Nowadays integration in CHP schemes
- 3x increase of energy efficiency compared to stand-alone
- Tailored design to integrate WtE in CHP schemes, to meet criteria:
 - High yearly availability
 - A stable steam supply
 - Cope with variable/seasonal demand
 - Different types of energy to multiple energy consumers

CAMPUS GROUP T LEUVEN

Thank you for your attention!

Bram.verbinnen@kuleuven.be

www.kuleuven.be/chemarts

