MSW incineration: from waste processing to combined heat and power production

Bram Verbinnen, Jo Van Caneghem
KU Leuven, Campus Group T

Johan De Greef
Keppel Seghers Belgium NV

Bram.Verbinnen@kuleuven.be
Evolution of MSW treatment

Landfill

Waste incineration

WtE as CHP

Waste-to-Energy

KU LEUVEN
Energy from waste

- Energy from waste
 - Electricity
 - Heat, e.g. district heating
 - Steam

- Energy efficiency dependent on:
 - Calorific value of the waste
 - Heterogeneity of the waste
 - Chemical complexity of the combustion gases
 - Legal requirements
WtE as CHP

• Not straightforward

• Challenges:
 o General energetic optimization of the process
 o Design and operational challenges for WtE as CHP
 • Annual waste throughput
 • Plant availability
 • Plant operation: flexibility vs. continuity
 • Stability of energy supply
General energetic optimization

- **Optimization of process control**
 - Automated waste feeding, air management, grate movement
 - Energetic content of the waste released in most stable way possible
 - Stable flue gas conditions

- **Lowering of excess oxygen**
 - To avoid excessive cooling
 - > 5v% at boiler outlet!
General energetic optimization

• **Internal recycling of process heat**
 - Primary/secondary combustion air preheating

• **Recovery of low-temperature heat**
 - Flue gas $T >$ dewpoint acids

• **Increase of boiler steam parameters**
 - Need for costly extra protective measures

→ Up to 10% improvement of electrical efficiency
→ Increase of R1 value above limit value of 0.60
Design and operational challenges for WtE as CHP

• **Annual waste throughput**

 o **Needs to be ensured continuously**

 o **Also when no steam required by customer**
 • Send additional steam to a turbine
 • Send excess heat to buffering heat network

 o **Needs to be incorporated in design waste-fuelled CHP plant**
Design and operational challenges for WtE as CHP

• **Plant availability**

• **Customers:**
 - Chemical industry, paper mills, large greenhouses, district heating, 24/7 operation
 - Require steam 100% of the time, typical WtE availability 90-95%

• **Extend operation period between shutdowns**
 - Redundant equipment, additional on-line boiler cleaning, more frequent technical inspections and small reparations

• **Anticipate alternate downtimes of the WtE process lines**
Design and operational challenges for WtE as CHP

- **Plant operation: flexibility versus continuity**

- Different customers have different steam demands
 - Chemical industry vs. small paper mill vs. district heating

- Complex design of Rankine cycles
Design and operational challenges for WtE as CHP

- **Stability of energy supply**

- Steam stability dependent on definition
 - Standard deviation from process value
 - Average of deviation of the process value from setpoint
WtE as CHP

• Examples
 o Great Manchester Waste Disposal, Runcorn, UK
 • 17 bar steam to INOVYN + electricity, total plant efficiency 48%
 o Indaver site, Beveren, Belgium, Ecluse project
 • Steam network + electricity, total plant efficiency ± 50%
 o Attero site, Moerdijk, The Netherlands
 • 100 bar, 400°C steam to Essent→Shell, total plant efficiency 85%
Conclusions

• Electrical energy efficiency of WtE plants is low due to properties inherent to waste
• Nowadays integration in CHP schemes
• 3x increase of energy efficiency compared to stand-alone
• Tailored design to integrate WtE in CHP schemes, to meet criteria:
 o High yearly availability
 o A stable steam supply
 o Cope with variable/seasonal demand
 o Different types of energy to multiple energy consumers
Thank you for your attention!

Bram.verbinnen@kuleuven.be

www.kuleuven.be/chemarts