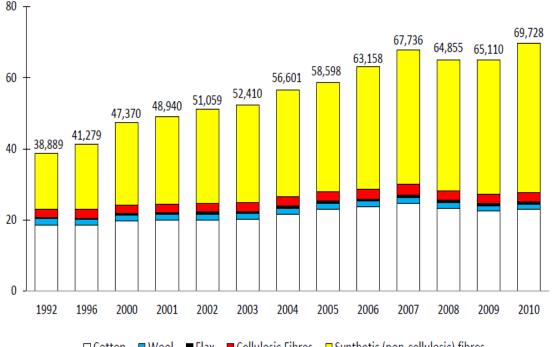
能源及環境學院 SCHOOL OF ENERGY AND ENVIRONMENT

専衆 創新 商懐全球 Professional・Creative For The World


Cellulase Production via Solid State Fermentation on Textile Waste

HU Yunzi

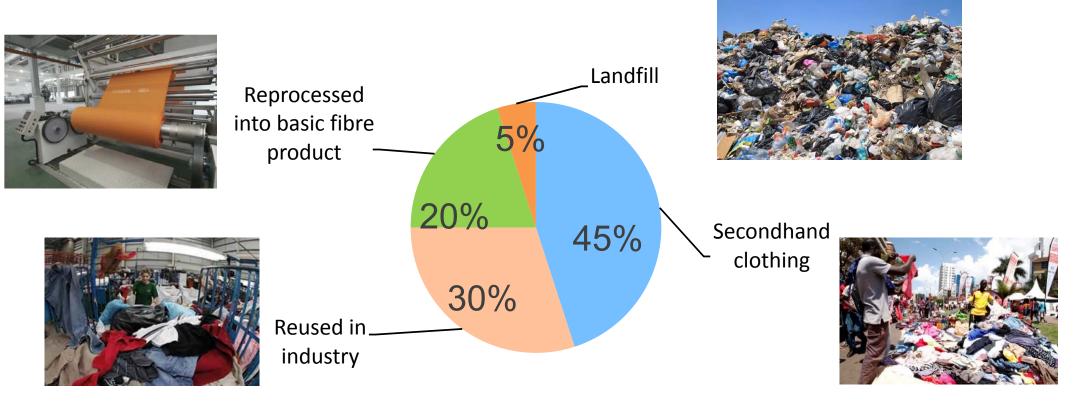
5th International Conference on Sustainable Solid Waste Management Athens, 2017

Project background-Textile consumption

- In the decade of 2001-2010, the textile consumption expanded by 42 43%
- In 2011-2014, annual textile consumption reached **80 90 million tonnes**

Textile wastes: 10-20% of all textile products

(ITP/109/15TP)

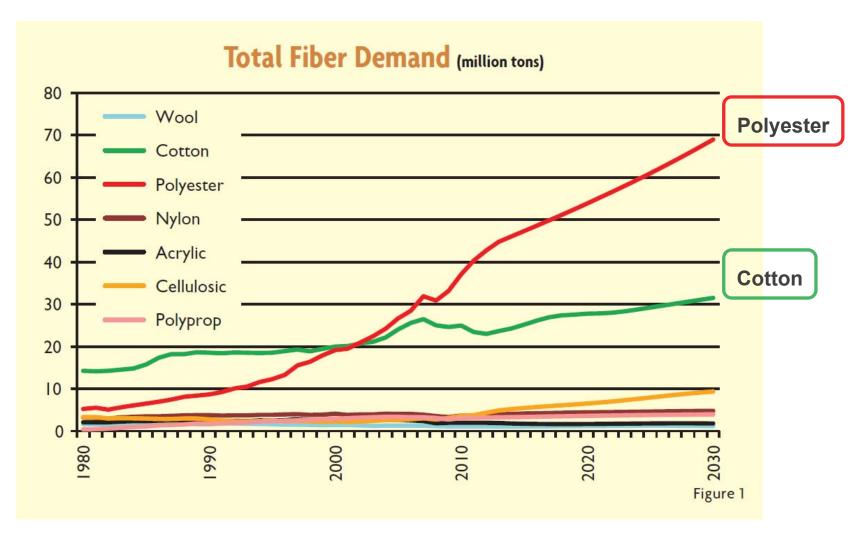

Generation wast (million tonn	e	Textile waste per capita (kg/year)
China	26.0	19.2
UK	1.0	15.6
US	12.4	32.0
HK	0.17	23.7

□ Cotton ■ Wool ■ Flax ■ Cellulosic Fibres □ Synthetic (non-cellulosic) fibres

Source: China Association of Resource Comprehensive Utilization; Waste & Resources Action Programme (UK); SMART textile recycling (US); Department EP of Hong Kong

Where did they go?

- Landfill: 85% of the total textile solid waste
- Recyclable percentage: 95% of landfilled textile waste
- Currently recycling percentage: **14-15%**

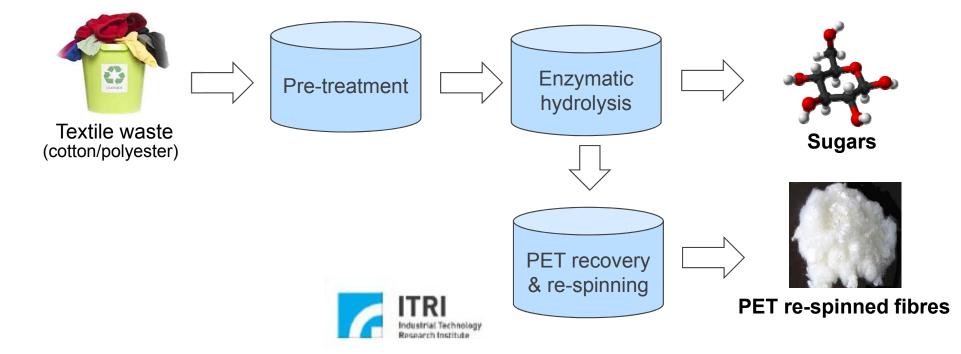


Source: U.S. Environmental Protection Agency and SMART Association, British Material Recycling Association

School of Energy and Environment, City University of Hong Kong

Project background-Textile consumption

• Cotton and Polyester: Top 2 in Fibre Demand

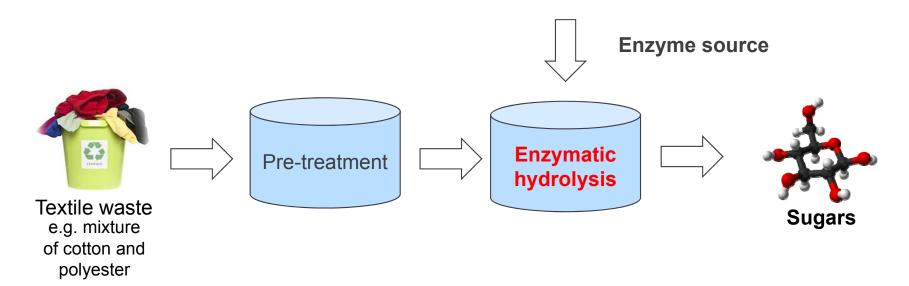


Source: Textile World, Man-Made Fibers Continue To Grow

Project introduction

We propose a sustainable textile waste recycling strategy in HK:

- **1. A novel approach of textile waste treatment via biological method**
- 2. Recovery of glucose from textile wastes through enzymatic hydrolysis
- 3. Separate the **PET** fiber from textile waste and reuse it in textile industry



School of Energy and Environment, City University of Hong Kong

Research target

Fungal cellulase production on textile waste

(Conducted by Dr. Carol Lin from CityU and Dr. Du Chenyu from the University of Huddersfield)

Materials	Dye	Pre-treatment	Source of enzymes
 100% Cotton 100% Polyester Cotton/PET blend (80/20, 60/40, 40/60) Jean 	ReactiveDisperseIndigo	 Alkaline Milling Autoclave	 Fungal enzymes (solid state fermentation: SSF)

Substrate: different types of textile fabrics (from H&M)

	A REAL					
Component	Cotton 100%	Cotton 80% PET 20%	Cotton 60% PET 40%	Cotton 40% PET 60%	PET 100%	Jeans (Cotton 99%, Elastane 1%)
Dye	Reactive dyestuff	Reactive dyestuff	Reactive dyestuff	Reactive dyestuff	Disperse dyestuff	Indigo dye

School of Energy and Environment, City University of Hong Kong

Cellulase producing fungal strains

Aspergillus niger CKB: Isolated from natural environment (provided by Dr. Diannan Lu, Tsinghua University)

Aspergillus niger N402: From Prof. David Archer in the University of Nottingham in the United Kingdom

T. reesei: Trichoderma reesei ATCC 24449

*T. longibrachiatum: Trichoderma longibrachiatum (*Prof. Colin Webb, The University of Manchester, United Kingdom)

R. variabilis: Rhizomucor variabilis (provided by Tsinghua University)

School of Energy and Environment, City University of Hong Kong

Substrate: 100% cotton fabric

Day 7

A. niger CKB

Moisture: 65-85%

Duration: 7 days

Day 0

Before SSF

Temperature: 28°C

Supplemented nutrient: yeast extract 2.5% (w/w)

Cellulase production via SSF on textile waste

1. Screen of fungal strains

Cutting

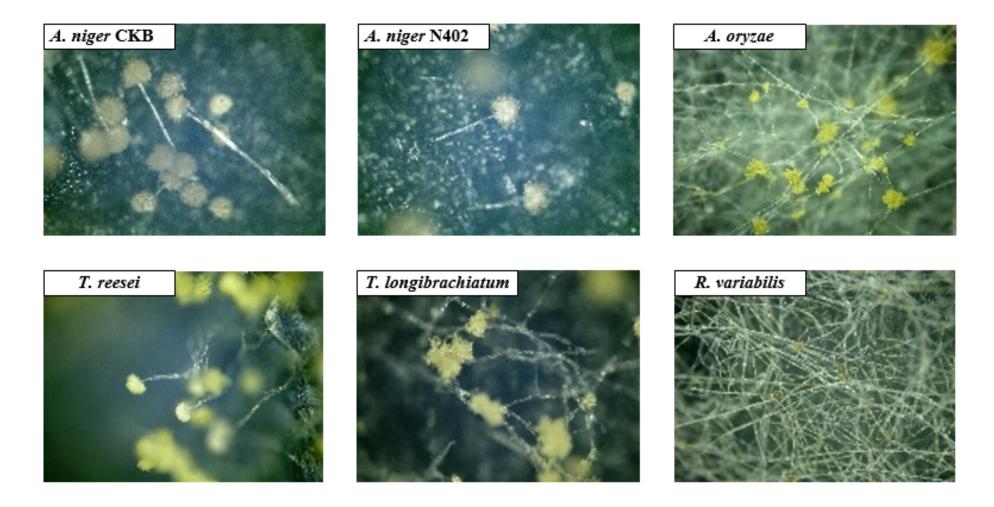
School of Energy and Environment, City University of Hong Kong

A. oryzae

A. niger N402

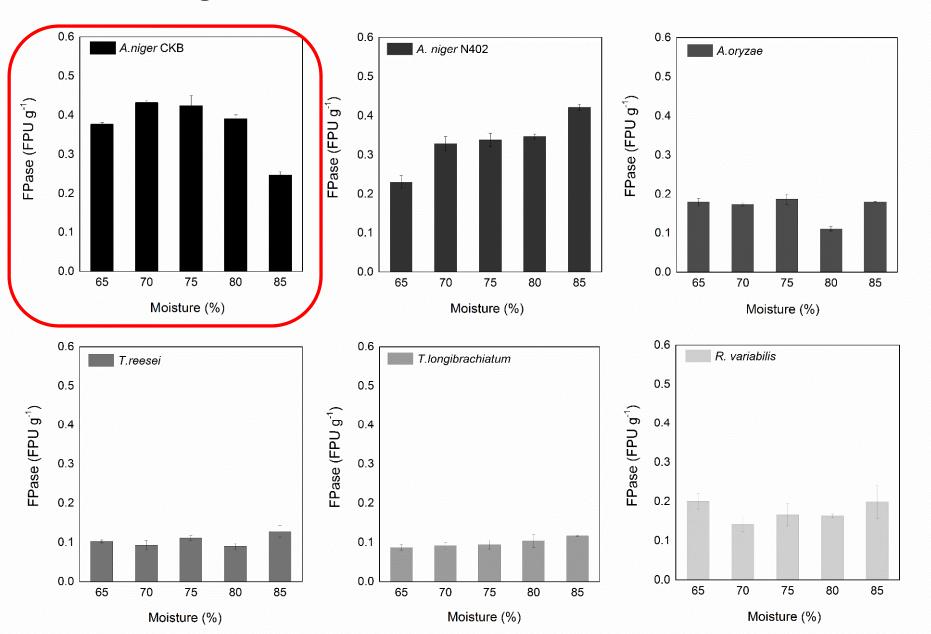
R. variabilis

T. longibrachiatum

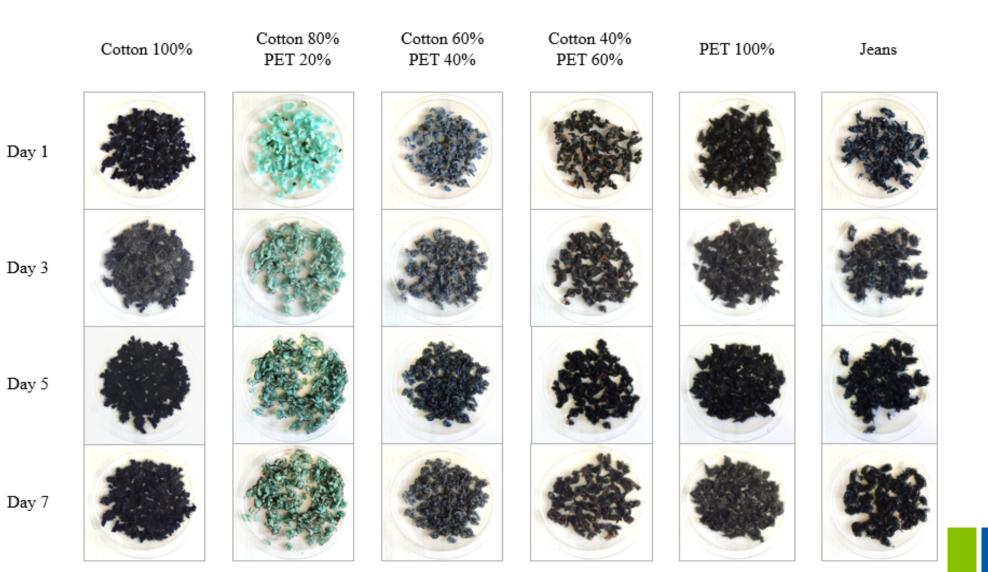

T. reesei

(ITP/109/15TP)

 $0.8 \times 0.8 \text{ cm}^2$


1. Screen of fungal strains

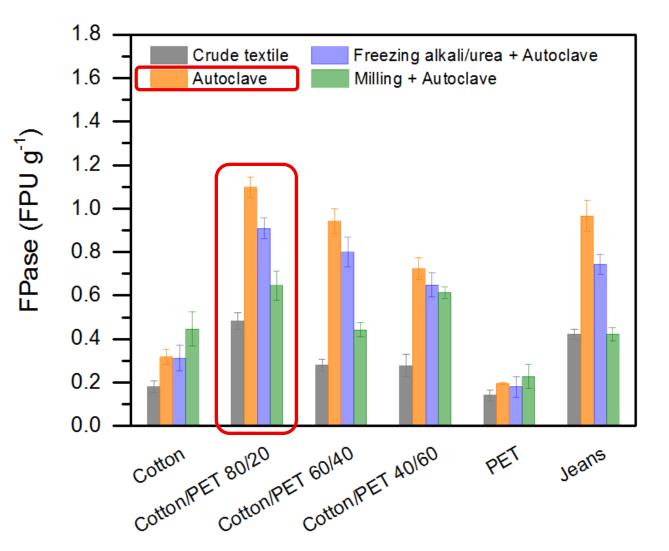
Microscope detection


School of Energy and Environment, City University of Hong Kong

1. Screen of fungal strains

2. Comparison of different textile fabrics

Substrate: 6 types of textile fabrics; Moisture: 75%; Temperature: 28°C; Yeast extract: 2.5 w/w%



11

2. Comparison of different textile fabrics

Pretreatments

- 1. Autoclave (121°C for 15 min)
- 2. Freezing alkali/urea (Soaking at -20 °C for 6 h)
- 3. Milling (powder form, < 1 mm²)

Polytechnic University 香港理工大學

Pretreatments were conducted by our collaborators Dr. Shao-Yuan Leu and Dr. Hao Liu in Hong Kong Polytechnic University

School of Energy and Environment, City University of Hong Kong

4. Optimization of fermentation condition by Response Surface Methodology

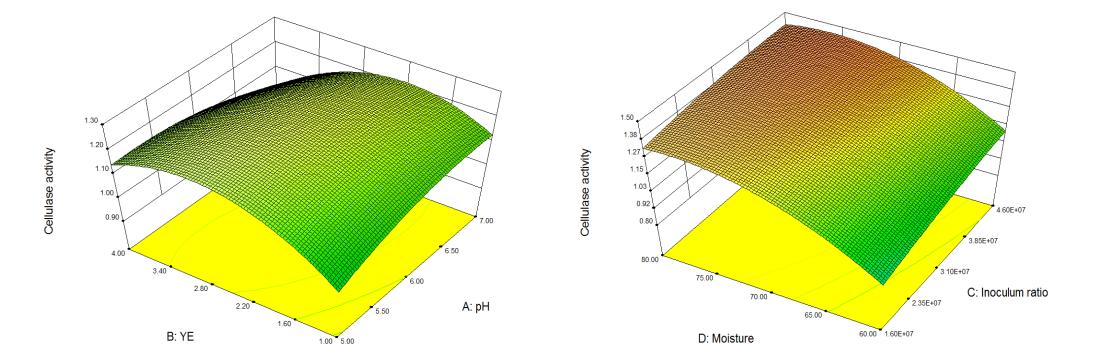
(ITP/109/15TP)

Response: Cellulase activity (FPU g⁻¹)

Numeric factor	Unit	Low value	High value	-alpha	+alpha
A. pH	-	5	7	4	8
B. Yeast extract	w/w %	1	4	0	5.5
C. Inoculum size	Spores g ⁻¹ textile	1.6E+007	4.6E+007	1E+006	6.1E+007
D. Moisture	%	60	80	50	90

ANOVA for Response Surface Quadratic Model

Analysis of variance table [Partial sum of squares - Type III]


	Sum of		Mean	F	p-value	
Source	Squares	df	Square	Value	Prob > F	
Model	1.72	14	0.12	12.25	< 0.0001	significant
А-рН	4.778E-006	1	4.778E-006	4.755E-004	0.9829	
B-YE	4.431E-003	1	4.431E-003	0.44	0.5167	
C-Inoculum size	0.14	1	0.14	13.68	0.0021	
D-Moisture	0.60	1	0.60	59.30	< 0.0001	

Conclusions

- Model: significant
- Importance of factors:

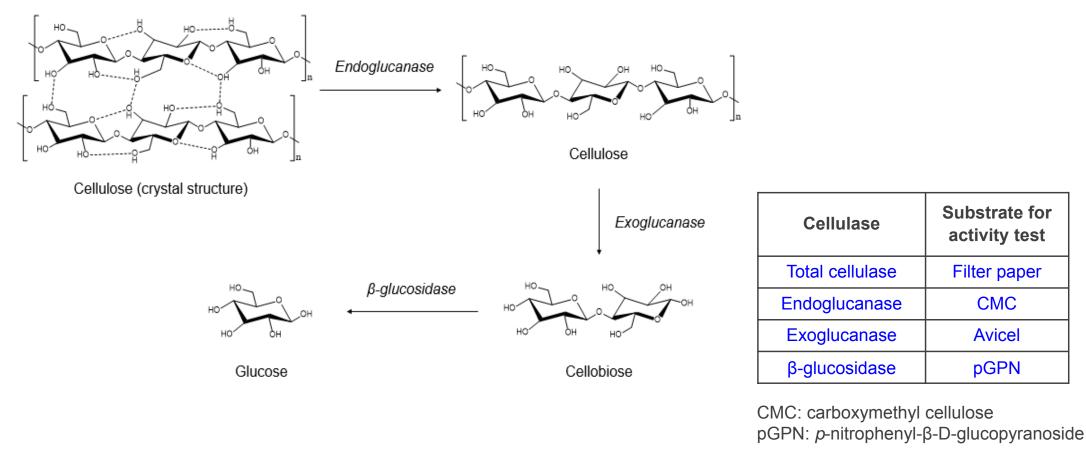
Moisture > Inoculum size > > pH > Yeast extract

4. Optimization of fermentation condition by Response Surface Methodology

Optimal condition

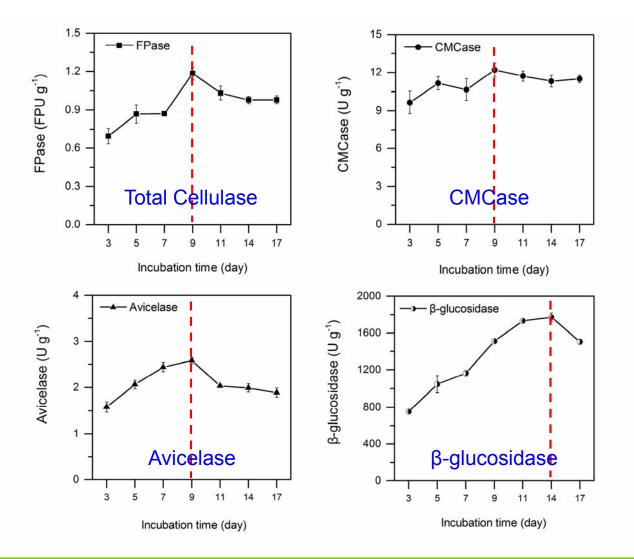
Moisture 77-78%, inoculum size 3.1×10^7 spores g⁻¹ textile,

pH 6-7, yeast extract 2.3 w/w%


High point

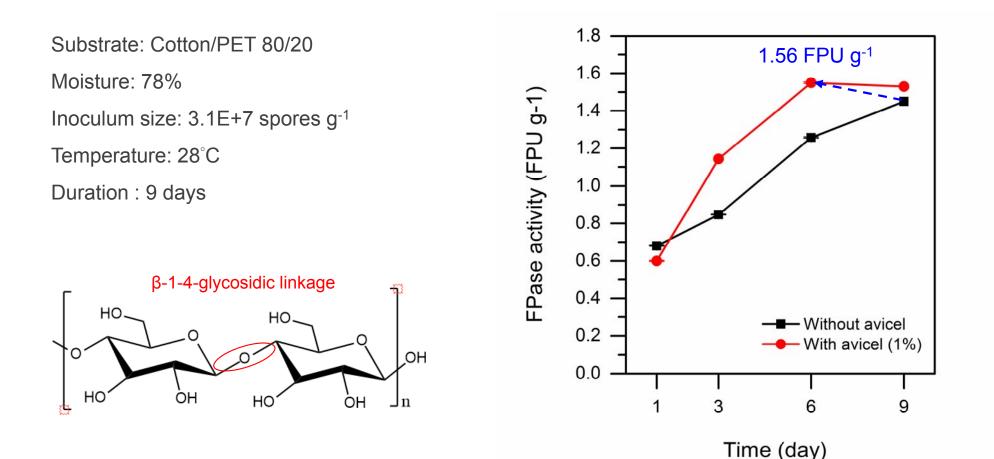
1.44 FPU g⁻¹ from cotton/PET 80/20

 $(17\% \text{ increase from } 1.24 \text{ FPU } \text{g}^{-1})$


School of Energy and Environment, City University of Hong Kong

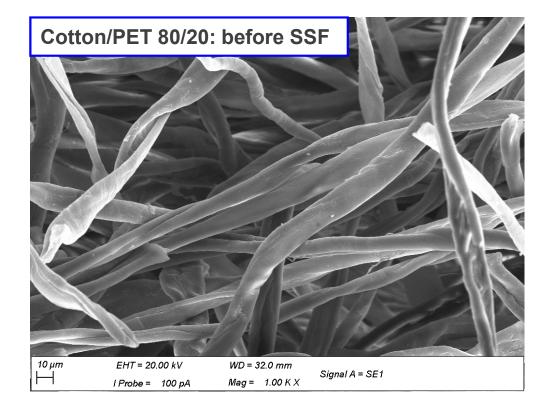
5. Time courses of total cellulase activity and individual cellulase activities

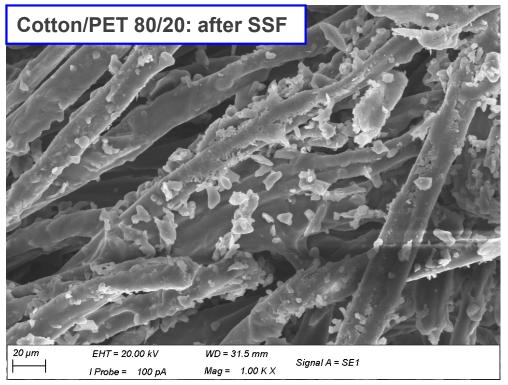
Synergistic effect of a complete cellulase system


5. Time courses of total cellulase activity and individual cellulase activities

School of Energy and Environment, City University of Hong Kong

5. Time courses of total cellulase activity and individual cellulase activities

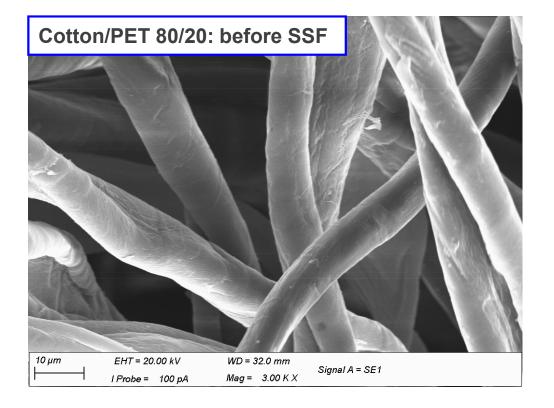

Effect of avicel (1 w/w%) on cellulase time profile

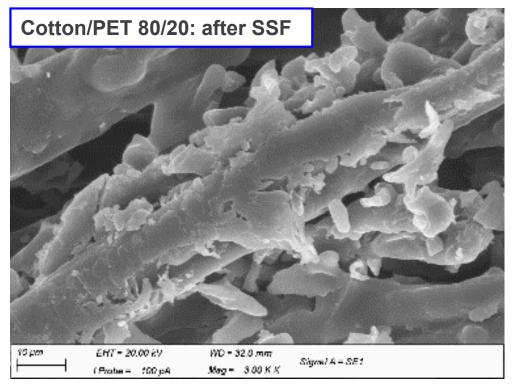


School of Energy and Environment, City University of Hong Kong

6. Scanning Electron Microscope (SEM) detection

Magnification of 1000x

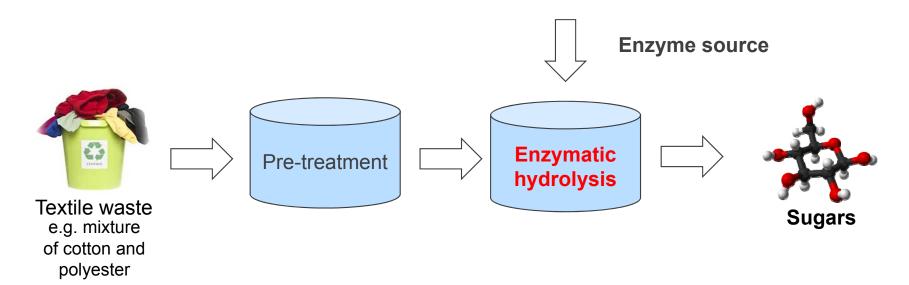




(ITP/109/15TP)

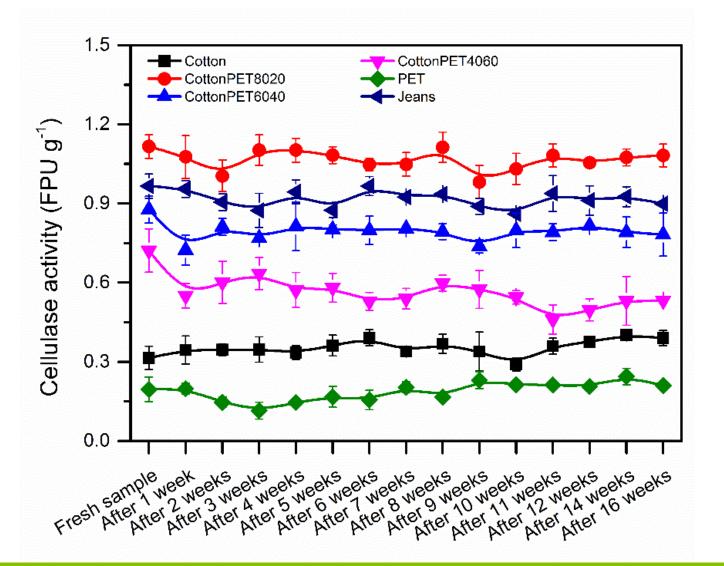
6. Scanning Electron Microscope (SEM) detection

Magnification of 3000x



(ITP/109/15TP)

Research target


Fungal cellulase production on textile waste

(Conducted by Dr. Carol Lin from CityU and Dr. Du Chenyu from the University of Huddersfield)

Materials	Dye	Pre-treatment	Source of enzymes
 100% Cotton 100% Polyester Cotton/PET blend (80/20, 60/40, 40/60) Jean 	ReactiveDisperseIndigo	 Alkaline Milling Autoclave	 Fungal enzymes (solid state fermentation: SSF)

7. Retention of fungal cellulase extract (in -20°C freezer)

	Cellulase activity (FPU g ⁻¹)			
	Fresh sample	After 4 months		
Cotton	0.31	0.39		
Cotton/PET 80/20	1.12	1.08		
Cotton/PET 60/40	0.88	0.78		
Cotton/PET 40/60	0.72	0.53		
PET	0.20	0.21		
Jeans	0.97	0.90		

(ITP/109/15TP)

Cellulase activity maintained stably for 4 months

Conclusions

- Cellulase was successfully produced on textile waste by solid state fermentation;
- The fungal strain *A. niger* CKB was selected (provided by Prof. Diannan Lu in Tsinghua University);
- <u>Moisture</u> and <u>inoculum size</u> are important factors;
- The highest cellulase activity was around 1.56 FPU g⁻¹, obtained on textile of <u>cotton</u>
 <u>80% and PET 20%</u> within 6 days (80% moisture, 3.1E+7 spores g⁻¹ textile);
- Crystalline structure of textile substrate was partially disrupted by cellulase digestion;
- Retention of crude fungal cellulase activity by freezing storage for application in textile hydrolysis.

Acknowledgements

- □ The Hong Kong Research Institute of Textiles and Apparel (HKRITA)
- □ **Sponsor:** H&M Hennes & Mauritz (Far East) Ltd.

□ Supervisor:

• Dr. Carol Lin

□ Collaborators:

- Dr. Chenyu Du (University of Huddersfield, United Kingdom)
- Dr. Shao-Yuan Leu (Hong Kong Polytechnic University)
- Dr. Hao Liu (South China University of Technology, China)
- Dr. Diannan Lu (Tsinghua University, China)

Research team

能源及環境學院 SCHOOL OF ENERGY AND ENVIRONMENT

専東 景新 声懐全球 Professional・Creative For The World

Thank you for attention !

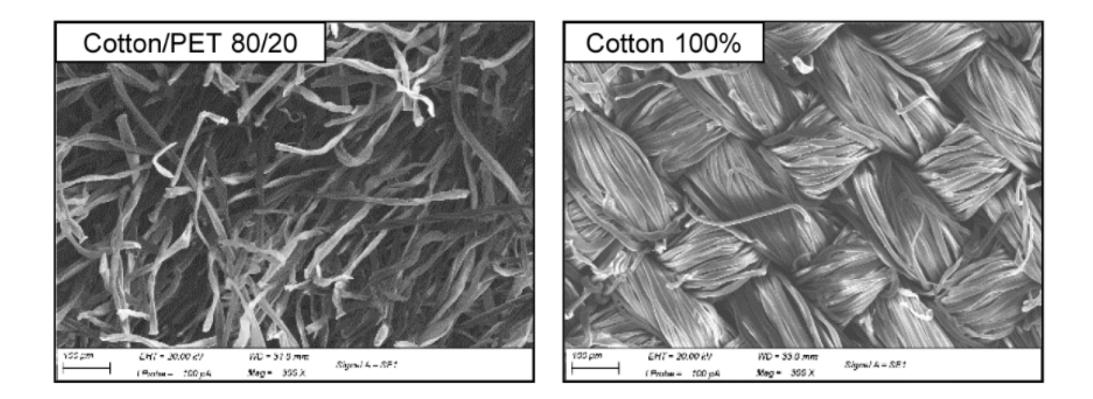
HU Yunzi

yunzihu2-c@my.cityu.edu.hk

5th International Conference on Sustainable Solid Waste Management Athens, 2017

Literature review

	Treatment			Fermentation		Polyester	
Materials	Pre-treatment	Enzyme treatment	Glucose yield (%)	process	yield	separation Efficiency (%)	Ref.
white 40/60 polyester/cotton blend	12 wt% <mark>NaOH</mark> -20 ~ 0 °C for 1h (5% solid load)	30 FPU cellulase 60 IU <mark>β-glucosidase</mark> per gram of cellulose	82	S. cerevisiae SSF	70% theoretical Ethanol	98	{Gholamzad, 2014 #1}
100% cotton linters; red T-shirt ; blue polyester/cotton	5 g/L Na2S2O4 and Na2CO3 solution 100 °C for 1 h	10 FPU/g <mark>Cellulase</mark> AP3 50 °C 250 rpm	90 80	Z. mobilis SSF	50 g/L Ethanol from 75g/L waste textile		{Kuo, 2014 #2}
(40/60) blended shirt	85% phosphoric acid 50 °C , 100 rpm for 2 h	48 h	60				
jeans	85% <mark>phosphoric acid</mark> 50 °C , 130 rpm for 24 h	7.5 FPU/g <mark>cellulase</mark> 50 °C 130 rpm 96 h	79.2			100	{Shen, 2013 #4}
100% cotton T-shirts	[AMIM]CI (ionic liquid) 110 °C for 90 min	66 U/g <mark>cellulase</mark> 50 ∘C, 80 rpm for 96 h	94				{Hong, 2012 #5}
orange 50/50 polyester/ cotton blend; blue 40/60 polyester/viscose blend	85% N- methylmorpholine-N- oxide 120 °C for 2h	20 FPU/g cellulase 30 IU/g <mark>β-glucosidase</mark> 48 h	92				{Jeihanipour , 2010 #6}
blue jeans textiles	18% (w/v) <mark>NaOH</mark> 23 °C for 3 h	20 FPU/g cellulase 30 IU β-glucosidase 45 °C for 48 h.	99	<i>S. cerevisia</i> e SSF	85–86%		{Jeihanipour , 2009 #7}


Analysis of Variance (F-test)

 $F = \frac{Varience between treatment (MSTreatment)}{Varience within treatment (MSError)}$

$$MS_{Treatment} = \frac{\sum_{i} n_{i} (\overline{X}_{i} - \overline{X})^{2}}{K - 1}$$

$$MS_{Error} = \frac{\sum_{ij} n_i (X_{ij} - \overline{X}_i)^2}{N - K}$$

- N: number of all results obtained;
- K: number of treatment;
- n: number of result in a treatment;
- \overline{X} : average value of all results;
- \overline{X}_i : average value of results in a treatment

Cotton/PET blended textile (furry surface structure)

Larger surface area

Better aerobic condition

4. Optimization of fermentation condition by Response Surface Methodology

Suggested optimal solution

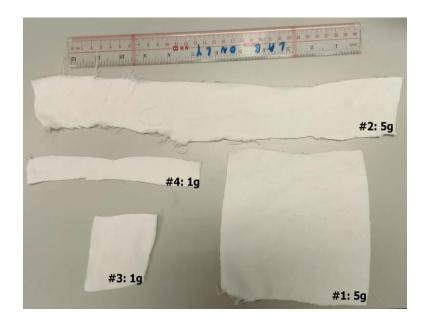
Moisture 78%, inoculum size 4.6×10^7 spores g⁻¹ textile, pH 7.2-7.3, yeast extract 2.3 w/w%

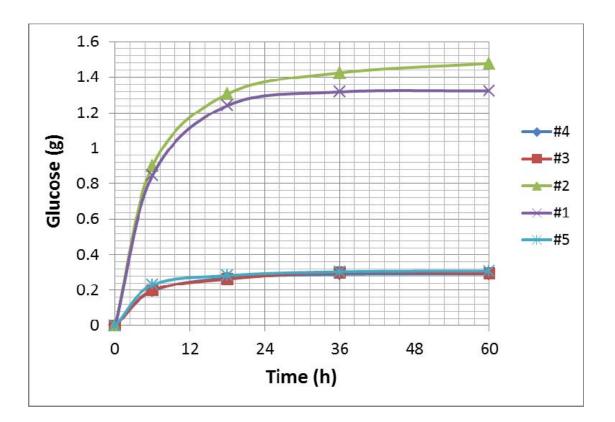
Test

- 1) Inoculum size 4.6×10^7 spores g⁻¹ textile:
- 2) Inoculum size 3.1×10^7 spores g⁻¹ textile:
- 3) Inoculum size 1.6×10^7 spores g⁻¹ textile:

Actual response 1.46 FPU g⁻¹ 1.44 FPU g⁻¹ 1.13 FPU g⁻¹

Predicted response


1.48 FPU g^{-1} (from cotton/PET 80/20)


School of Energy and Environment, City University of Hong Kong

(ITP/109/15TP)

Appendix

 Effect of fabric size on the enzymatic hydrolysis

No.	Shape	Initial weigh (g)	Final weigh (g)	Glucose (g)	Glucose recovery (g/kg)
1	Square $(14 \times 14 \text{ cm}^2)$	5.00	3.54	1.33	266
2	Rectangle ($40 \times 5 \text{ cm}^2$)	5.00	3.44	1.48	296
3	Square $(6.3 \times 6.3 \text{ cm}^2)$	1.00	0.66	0.29	290
4	Rectangle ($18 \times 2.2 \text{ cm}^2$)	1.00	0.70	0.29	290
5	Pieces $(0.3 \times 0.3 \text{ cm}^2)$	1.00	0.67	0.31	310

(ITP/109/15TP)

Appendix

Cellulase activity measurement

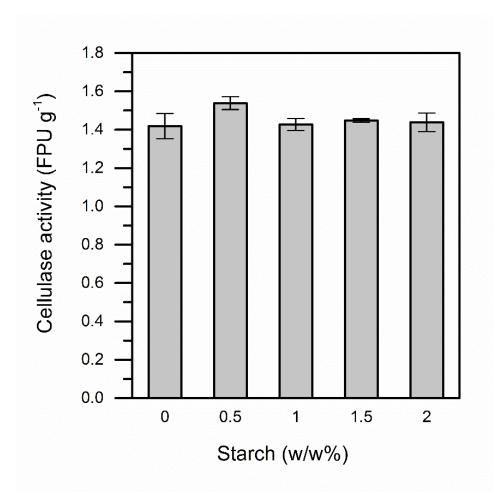
Enzyme extraction

(N. Pensupa, 2013)

- 1) Dissolved in 5 mM citric acid buffer
- 2) Blending and centrifuge
- 3) Collect the enzyme solution

Cellulase activity detection

(Filter paper activity, B. Adney, 1996)


1) 0.5 ml enzyme solution + 1 ml citric acid buffer + 50 mg filter paper roll

- 2) Water bath 50 °C for 1 h
- 3) + 3 ml DNS solution and boiling for 5 minutes
- 4) UV detection at 540 nm

(ITP/109/15TP)

Effect of starch on SSF

Moisture: 80%, Temperature: 28 °C, Duration : 9 days, Substrate: Cotton/PET 80/20

Starch as carbon source to support cell growth

Starch	Cellulase activity	REF
0% to 0.5%	1.42 to 1.53 FPU (increase 7.7%)	This study
0% to 0.75%	0.76 to 0.87 FPU (increase 14%)	Liang et al, 2012

Conclusion: insignificant

Effect of different cellulase producing inducers

Moisture: 80%, Temperature: 28 °C, Duration : 9 days, Substrate: Cotton/PET 80/20

Loading	Cellulase activity (FPU g ⁻¹)					
ratio (w/w %)	Sucrose	Lactose	CMC	Avicel	Filter paper scrap	
0	1.54	1.49	1.52	1.53	1.50	
0.5	1.52	1.48	1.14	1.52	1.37	
1	1.39	1.37	0.81	1.55	1.18 1.3%	
1.5	1.42	1.06	0.98	1.47	1.07	
2	1.43	1.17	1.07	1.40	1.28	
5	1.27	1.16	1.05	1.42	1.24	

School of Energy and Environment, City University of Hong Kong