NO and SO$_2$ emissions from combustion of raw and torrefied biomasses and their blends with lignite

Jale Yanik, Gözde Duman, Oskar Karlström, Anders Brink

Ege University, Faculty of Science, Chemistry Department, 35100, İzmir, Turkey
Faculty of Science and Engineering, Åbo Akademi University, Åbo, FI-20500, Finland
NO and SO$_2$ emissions from combustion of raw and torrefied biomasses and their blends with lignite

PRESENTATION OUTLINE

- General Aspects
- Methodology
- Results
- Conclusion
NO and \(\text{SO}_2 \) emissions from combustion of raw and torrefied biomasses and their blends with lignite

Why co-combustion?

- Simple and economically feasible way of utilizing biomass/waste for replacement of fossil fuels
- Reduction in net \(\text{CO}_2, \text{SO}_2 \) and often \(\text{NOx} \) emissions

Biomass/waste challenges

- Low heating value
- High moisture content
- Hygroscopicity
- Excess smoke
- Low combustion efficiency
NO and SO$_2$ emissions from combustion of raw and torrefied biomasses and their blends with lignite

- Higher energy density – lower transportation cost
- Improved grindability – suitable for dust burners (coal power stations)
- Hydrophobic – does not absorb water
- No biological degradation – can be transported and stored in the open air
- Clean combustion – suitable for indoor heating/cooking
NO and SO$_2$ emissions from combustion of raw and torrefied biomasses and their blends with lignite

Aim
Investigation of NO and SO$_2$ release from blends of lignite with four different biomasses

Fuel
- Lignite
- Poultry litter (PL)
- Olive tree pruning (OP)
- Torrefied PL and OP Blends (1:3, 1:1, 3:1)

Pelletization
Ø 8 mm

900, 1000, 1100 °C

O$_2$, CO, CO$_2$, SO$_2$, NO
NO and SO₂ emissions from combustion of raw and torrefied biomasses and their blends with lignite

<table>
<thead>
<tr>
<th></th>
<th>Lignite</th>
<th>PL</th>
<th>OP</th>
<th>PL-B</th>
<th>OP-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximate analysis (wt.% dry basis)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ash</td>
<td>11.5</td>
<td>8.2</td>
<td>3.3</td>
<td>12.8</td>
<td>4.1</td>
</tr>
<tr>
<td>Volatile matters</td>
<td>49.9</td>
<td>68.3</td>
<td>71.6</td>
<td>44.3</td>
<td>54.3</td>
</tr>
<tr>
<td>Fixed carbon</td>
<td>38.6</td>
<td>23.5</td>
<td>25.1</td>
<td>43.1</td>
<td>41.6</td>
</tr>
<tr>
<td>HHV, MJ kg⁻¹</td>
<td>25.1</td>
<td>14.4</td>
<td>17.8</td>
<td>22.9</td>
<td>22.3</td>
</tr>
<tr>
<td>Ultimate analysis (wt.% dry basis)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>63.92</td>
<td>35.7</td>
<td>43.47</td>
<td>57.39</td>
<td>54.79</td>
</tr>
<tr>
<td>H</td>
<td>4.25</td>
<td>5.27</td>
<td>5.78</td>
<td>4.40</td>
<td>5.35</td>
</tr>
<tr>
<td>N</td>
<td>1.51</td>
<td>9.61</td>
<td>1.29</td>
<td>5.88</td>
<td>1.62</td>
</tr>
<tr>
<td>S</td>
<td>1.11</td>
<td>0.24</td>
<td>0.18</td>
<td>0.48</td>
<td>0.27</td>
</tr>
<tr>
<td>O</td>
<td>17.71</td>
<td>40.98</td>
<td>45.98</td>
<td>19.05</td>
<td>33.87</td>
</tr>
<tr>
<td>Ash analysis (wt.% dry basis)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.76</td>
<td>5.11</td>
<td>2.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K₂O</td>
<td>1.41</td>
<td>26.53</td>
<td>22.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>2.48</td>
<td>39.52</td>
<td>59.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>1.73</td>
<td>6.22</td>
<td>6.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>53.71</td>
<td>4.73</td>
<td>5.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>24.08</td>
<td>1.09</td>
<td>0.86</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NO and SO_2 emissions from combustion of raw and torrefied biomasses and their blends with lignite

Published in: Jacopo Giuntoli; Wiebren de Jong; Adrian H. M. Verkooijen; Patrycja Piotrowska; Maria Zevenhoven; Mikko Hupa; Energy Fuels 2010, 24, 5309-5319.
DOI: 10.1021/ef100571n
NO and SO₂ emissions from combustion of raw and torrefied biomasses and their blends with lignite

Combustion time: 15 min for olive pruning
20 min for poultry litter
30 min for biochars / lignites
NO and SO$_2$ emissions from combustion of raw and torrefied biomasses and their blends with lignite

- no clear relation between the sulfur content of the fuel and the SO$_2$ emissions
- SO$_2$ emission depends on the amount and the composition of the mineral content of the fuel rather than on the sulfur content
- SO$_2$ emissions from torrefied biomasses are lower than that from that from raw biomasses despite their higher sulfur content
- temperature had effect on the SO$_2$ release
NO and SO₂ emissions from combustion of raw and torrefied biomasses and their blends with lignite

SO₂ emissions cannot be predicted based on the results obtained using pure fuel.

blending of lignite with torrefied biomass significantly decreased the SO₂ emission compared with the lignite case
NO and SO$_2$ emissions from combustion of raw and torrefied biomasses and their blends with lignite

Total NO emissions at different combustion temperature

- NO emission is not purely depend on nitrogen content in fuel, high fuel-N content could enhance De-NOx reaction
- NO release from biomasses was lower than those from torrefied biomasses
NO and SO$_2$ emissions from combustion of raw and torrefied biomasses and their blends with lignite

Experimental NO emission values for all blends were lower than the anticipated one.
NO and SO₂ emissions from combustion of raw and torrefied biomasses and their blends with lignite

CONCLUSION

- SO₂ emissions increased with increasing combustion temperature (except olive pruning).

- Although the torrefied biomasses had higher sulfur content, SO₂ emissions from the torrefied biomasses were lower than those of the untreated raw biomasses.

- Co-combustion of lignite with torrefied biomasses had a beneficial impact on SO₂ release.

- No benefit of co-combustion on NO release could be observed for blends of torrefied biomass with lignite.
NO and SO$_2$ emissions from combustion of raw and torrefied biomasses and their blends with lignite

ACKNOWLEDGEMENTS

This work was part of the research activities carried out in the framework of the “European Biofuels Research Infrastructure for Sharing Knowledge (BRISK)” (www.briskeu.com) project (contract nr. 284498). The European Commission is acknowledged for co-funding the work. The Academy of Finland (Decision No. 289666) is acknowledged for additional funding. It is a pleasure to thank Luis Bezerra for technical assistance.