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POULTRY INDUSTRY  AND POTENTIAL WASTES

 According to the Food and

Agriculture Organization of the

United Nations (FAO), poultry

account for over 80% of all livestock

(FAO, 2015a).

 The poultry industry produced

approximately 23 billion poultry in

2013 all over the world (FAO,

2015b).

Today, poultry are mostly raised in

large farms.
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Poultry industry produces two types of wastes:

1. Poultry meal: is made from ground,

rendered, clean parts of poultry carcasses

and can contain bones, offal, undeveloped

eggs, and in few cases, feathers, that are

unavoidable in the processing of the poultry

parts.

2. Poultry litter: is a mix of poultry excreta,

spilled feed, feathers, and bedding materials

resulting from intensive poultry production.

 Environment legislation about the disposal

of wastes from the poultry industry requires

the proper management of these wastes.
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Due to the intensive poultry farming, poultry litter raise serious concerns about

treatment and disposal. It is traditionally used as fertilizer, but potential

environmental problems such as spread of pathogens [1] and emission of

greenhouse gases and odorous compounds are reported due to its overuse as

fertilizer [2].

Poultry meal was used in formulated animal feed, but today it can be only used

in formulated pet feed according to EU Regulation 1774/2002 (European

Community, 2002).

Therefore, the poultry industry is facing difficulties in the proper treatment of

surplus poultry litter and meal and seeking an alternative technology for the

utilization of these wastes.
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MANAGEMENT OF POULTRY WASTES



 In this context, to consider poultry wastes as a potential feedstock for thermal

conversion technologies can be of great interest both economically and

environmentally.

Among the thermochemical conversion processes, biomass fast pyrolysis

seems to be the most emerging technology for the production of liquid oil (bio-oil).

Introduction Materials Methods Results and Discussion Conclusions

Bio-oil is considered to be a very promising biofuel /

bioenergy carrier, as

it can be easily transported,

burned directly in thermal power stations or in gas

turbines and

utilized into a conventional petroleum refinery for the

production of higher quality light hydrocarbon fuels [3].



Disadvantages of Bio-oil
Bio-oil usually presents several disadvantageous characteristics, such as

High water and oxygen content,

corrosiveness,

 instability under storage and heating conditions,

 immiscibility with petroleum fuels,

high acidity,

high viscosity,

 low calorific value;

all these become the primary obstacles for its direct application as a

fuel [3].
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Different approaches for upgrading of bio-oil exist

including

 high pressure hydro-treatment [4, 5]

reactive pyrolysis [6]

bio-oil distillation [7] and

catalytic fast pyrolysis of biomass [8].

 Catalytic fast pyrolysis of biomass might be a good

alternative from the point of bio-oil quality and process

economics.

Upgrading of Bio-oil
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Catalytic pyrolysis of biomass takes place under the same conditions as

thermal fast pyrolysis, with the difference being that pyrolysis vapors come

in contact with a solid catalyst prior to their condensation.

The specific function of various catalysts can alter the product yields and

selectivity.The catalytic reactions that take place on the catalyst’s surface

enhance the removal of oxygen in the form of CO2, CO and H2O, thus

leading to the formation of a bio-oil with tailored composition and improved

properties.

Several types of microporous (e.g. zeolites: Y, ZSM-5, Mordenite and

Beta) and mesoporous (e.g. MCM-41, MSU, SBA-15) materials have been

studied as catalysts for biomass pyrolysis or for the upgrading of bio-oil.

Catalytic fast pyrolysis



The main purpose of this study was to 
convert poultry wastes into bio-oil by
catalytic fast pyrolysis.

Objectives
Introduction Materials Methods Results and Discussion Conclusions

The specific objectives were to:

1. to investigate the effect of catalyst type (ZSM-5 and MgO) on

product distribution, bio-oil yield and composition

2. to evaluate the catalysts’ ability to reduce the oxygen content

of the bio-oil, while maintaining the bio-oil yield at acceptable

levels (catalyst screening)

3. to evaluate the catalysts’ selectivity towards desirable product



Elemental, Proximate and Component
Analysis of Poultry Wastes
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  Proximate analysis, (wt.%)  Component analysis, (wt.%) 
  Moisture  Ash    Protein  Oil 

PM  6.1  10.4 59 16
PL  1.64  19.0 23 N.D.
 

 
  Elemental analysis, ( wt.%) 

C  H N S O*

PM  51.6  7.6  9.3  0.0  21.1 
PL  38.5  5.0  3.6  0.0  33.9 
 



Catalytic Materials
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ZSM‐5 MgO
Average Pore Size (nm) 138 40
Average Pore Size (nm) 4 35
Pore Volume (cm3/g) 0.11 0.34
Micropore Volume (cm3/g) 0.04 0
Mesopore Volume (cm3/g) 0.07 0.34
Total  Acidity (μmol Pyridine/g)1 54.6 N.D.
Bronsted Acidity (μmol Pyridine/g)1 36.5 N.D.

Lewis Acidity (μmol Pyridine/g)1 18.1 N.D.
Total Basicity (μmol CO/g)2 N.D. 147

Weak / Medium Basicity (μmol CO/g)2 N.D. 115
Strong Basicity (μmol CO/g)2 N.D. 32



 The catalyst bed temperature (500 °C) was
considered as the experiment temperature

 A specially designed piston system was used to
introduce the biomass feedstock into the reactor.

 Initially, the reactor was filled with 0.7 g catalyst
(ZSM-5 or MgO) or silica sand

 The piston was filled with either 1.5 g of PM or 3
g of PL as feedstock.

Catalytic Fast Pyrolysis Experiments
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Product yield distribution-poultry meal 
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Product yield distribution-poultry litter
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Gas product yields  
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ZSM-5 increased the gas yield from 

PL, which was noticeable as an 

increase in CO  yield.

Acidic catalysts were reported to 

have the tendency to favor CO 

production in the study of Stefanidis et 

al.(2011)

MgO increased the gas yield, which 

was mainly noticeable as an increase 

in CO2 yield and light hydrocarbons. 

The increase in CO2was attributed to 

the conversion of acids in the pyrolysis

vapors to ketones via ketonization

reactions, which release CO2 and are 

catalysed in the presence of basic 

catalysts. 
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Chemical composition of the bio-oil (peak area %)
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AR ALI PH AC EST AL ETH ALD KET PAH NIT SUL Oxy
PH UN

Poultry Meal + Sand 0.95 7.36 1.18 17.60 3.85 2.90 0.07 19.43 1.64 0.00 16.45 0.42 0.00 28.10

Poultry Meal + MgO 2.95 15.89 1.70 0.00 2.84 5.37 0.25 1.03 4.02 0.00 14.66 0.00 0.00 51.27

Poultry Meal + ZSM-5 3.62 7.73 1.05 7.34 1.85 3.12 0.00 1.01 1.55 0.23 32.80 2.67 0.00 36.85

Poultry Litter + Sand 1.08 4.59 4.36 5.15 2.97 4.56 0.14 0.78 5.99 0.00 7.08 1.40 6.84 54.00

Poultry Litter + MgO 2.79 7.69 6.23 2.57 1.41 1.48 0.25 0.83 7.25 0.00 9.48 0.84 4.80 54.25

Poultry Litter + ZSM-5 4.54 5.11 4.65 2.94 0.14 0.00 0.00 0.21 3.55 0.36 14.75 0.00 6.53 57.07

aromatic hydrocarbons (AR), aliphatic hydrocarbons (ALI), phenols (PH), furans (FUR), acids(AC), esters (EST), alcohols (AL),
ethers (ETH), aldehydes(ALD), ketones (KET), polycyclic aromatic hydrocarbons (PAH), nitrogen containing compounds (NIT),
sulphur containing compounds (SUL), phenolics with oxygenated substitutes (OXYPH).



Elemental composition of bio-oils
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Carbon Hydrogen Nitrogen Oxygen

Poultry Meal + Sand 67.22 10.23 8.90 13.65

Poultry Meal + MgO 74.70 11.02 9.51 5.77

Poultry Meal + ZSM-5 72.25 10.50 9.75 7.30

Poultry Litter + Sand 71.88 7.42 N.D. N.D.

Poultry Litter + MgO 71.97 8.26 8.07 11.70

Poultry Litter + ZSM-5 82.85 7.64 4.92 4.59

The addition of catalytic materials resulted in an increase of the 
carbon content of the bio-oil from PM. 
C content of bio-oil from PL was significantly increased to 82.9 % 
with the use of ZSM-5 as catalyst



Bio-oil yield versus oxygen content in the bio-oil
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More oxygen removed, less boi-oil collected.

The most deoxygenated bio-oil in expense of bio-oil yield.
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Conclusion
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 Pyrolysis of poultry waste, particularly poultry
meal, gave high yields of bio-oil, but it was of very
low quality because of the unusually high nitrogen
content (compared to lignocellulosic feeds).

 The catalysts reduced the oxygen content of the
bio-oils and also reduced some undesirable
compounds, but according to the elemental
analyses, the nitrogen content remained high.

 Therefore, even the catalytic bio-oils can be
problematic and further research is needed to
improve their quality in order to be considered for
energy purposes.



Special thanks to Stelios, Maria and Kostas
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Depletion of fossil fuel resources that the world currently relies on is
an inevitable truth.

Sustainable, clean-energy sources must be produced and used more
extensively than ever before.
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 One of those sources is bio-

energy, which is produced

when chemical energy stored

in biomass is utilized.

http://www.rebltd.ca/markets/
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 First generation biofuels try to meet the bio-energy demand of the world 

commercially. 

http://www.southampton.ac.uk/~lg1e08/cenv6141/

1st generation biofuels
(using mostly edible feedstocks)

Bioethanol from
• Sugarcane
• Maize
• Wheat

Biodiesel from
• Vegetable oils
• Animal fats
• Waste oil

 The main issue associated with the first generation bio-fuels is the 

global rise in food prices due to the intensive usage of food crops as 

feedstock.
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• Limitations of first generation bio-fuels resulted in a growing attention on 
second generation bio-fuels which do not compete with food and feed 
resources. 

2nd generation biofuels

Non-food 
feedstocks

Conversion 
Processes

Bio-Fuel
• bio-ethanol 

• syngas

• bio-oil

• bio-gas

• bio-hydrogen

• bio-char

Electricity

Heat

Agricultural Wastes
Forest Wastes
Animal Wastes
Industrial Wastes
Municipal Wastes

• Combustion
• Gasification
• Pyrolysis
• Hydrothermal Conversion
• Enzymatic Hydrolysis
• Fermentation
• Anaerobic Digestion



Bio-oil Characterization 
The organic phase (bio-oil) collected as a solution using dichloromethane was then

submitted for GC-MS analysis.

For GC-MS analysis, an Agilent 7890A/5975C gas chromatograph-mass spectrometer

system (Electron energy 70 eV; Emission 300 V; Helium flow rate: 0.7 cc/min; Column: HP-

5MS 30 m × 0.25 mm ID × 0.25 µm) was used. The NIST 05- mass spectra library was

used for the identification of the compounds found in the bio-oil.

In bench-scale in-situ fast pyrolysis experiments and slow pyrolysis experiments, a

sample of the bio-oil was drawn with a syringe without any solvent addition and was

submitted for further analysis (carbon, hydrogen and nitrogen content) without weighing.

The gaseous products were analyzed in a HP 5890 Series II gas chromatograph,

equipped with four columns (precolumn: OV-101; columns: Porapak N, molecular sieve 5 Å

and Rt-Qplot 30 m × 0.53 mm ID) and two detectors (TCD and FID) except slow pyrolysis.
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