Department of Food and Nutritional Sciences

THERMAL PRE-TREATMENT OF LIGNOCELLULOSIC BIOMASS AS A SUBSTRATE FOR ANAEROBIC DIGESTION

F. Kaldis, D. Cysneiros, A. Chatzifragkou, K.A. Karatzas

Copyright University of Reading

LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT

ANAEROBIC DIGESTION

PRETREATMENT CHOICE

3

- 1. Physical (maceration of the substrate)
- 2. Chemical (alkali or acid pretreatment)
- 3. Biological (the use of fungi)
- 4. Hydrothermal (steam explosion)
- Biomass structure opens up due to thermal expansion, (reduction of the particle size and an increase in the pore volume)
- The polysaccharides are hydrolysed to simpler sugars
- Higher degradation rates from the microorganisms of AD

- Effect of different retention times in a thermal pre-treatment and the correlation between this and the organic load rate of mesophilic anaerobic bioreactors
- Introducing the liquid part of the thermal pretreatment in AD systems and assessing its effects
- Modeling the biomethane production data of the experiment using an one phase exponential model

MATERIALS AND METHODS

- Batch mode (mesophilic conditions)
- Inoculum : The effluent of a full scale biogas plant (digesting crops)
- Substrate: Wheat straw (WS)
- Pretreatment: high temperature (140 °C) and pressure (2.75 bars))
- Retention times (0, 30, 60 and 90 minutes)
- OLR (2, 4, 8 and 12 Kg VS/m³)

EFFECT OF THE PRE-TREATMENT ON THE WS

- The pores of the substrate were opened and the water absorption • from the WS increased
- Part of the sugars were released from the lignocellulosic structure and ulletpassed into the liquid phase (no washing step was carried out)
- The increase trend in lignin concentration can be attributed to the • formation of cross-linked aromatic compounds due to the pretreatment LIMITLESS **OPPORTUNITIES** LIMITLESS POTENTIAL LIMITLESS IMPACT

CH₄ PRODUCTION (L/KG VS)

•
$$Y = Ymax (1 - e^{-k(t - t_{lag})})$$

- OLR of 2 kg/m³, a retention time of 60 min was more efficient
- OLR of 12 kg/ m³, a pre-treatment of 60 or 90 min led to increased biomethane production

LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT

EFFECT OF THE LIQUID ADDITION

- AD systems with lower organic loads seemed to be more affected by the addition of the liquid fraction of the pre-treatment
- It is believed that the amount of active microorganisms is playing vital role for the digestion of the thermal treated samples

CONCLUSIONS

9

- Thermal pre-treatment was successfully applied on WS prior to anaerobic digestion.
- This specific pre-treatment seems to have different effect on the process under different OLR.
- 1. OLR of 2 kg/ m^3 favoured 60 min treatment
- 2. OLR of 12 kg/m^3 favoured 60 or 90 min treatment
- Anaerobic bioreactors are more likely to handle higher OLR when fed with thermally pre-treated lignocellulosic biomass. In that way, higher volumetric methane yields can be achieved, maintaining the biogas output of existing Plants.

GREAT THANKS

EPSRC

Research Council

Engineering and Physical Sciences

Supervisors team: Dr. Kimon-Andreas Karatzas*, Dr.
Aphrodite Chatzifragkou, Dr. Denise Cysneiros
Dr. Karatzas group:
Marcia, Carolina, Ruth, Oluwabunmi and Ranju

