

eSymbiosis: Semantically Supported Industrial Symbiosis Targeting SMEs

<u>F. Cecelja</u>^a, N. Trokanas^a, T. Raafat^a, P. Innes^b, M. Smith^c, A. Migiakis^d, A. Kokossis^e

^aUniversity of Surrey, UK ^bPIC ltd., UK ^cAVCOSystems ltd., UK ^dCLMS, Greece ^eNational Technical University of Athens, Greece

Industrial symbiosis scene

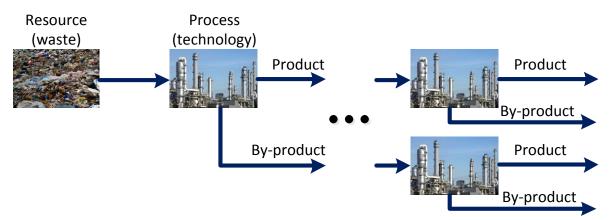
Concept and functionality of eSymbiosis platform

Addressing SME issues

Implementation of IS domain ontology

Formation of IS networks (ontology matching)

Demonstration example

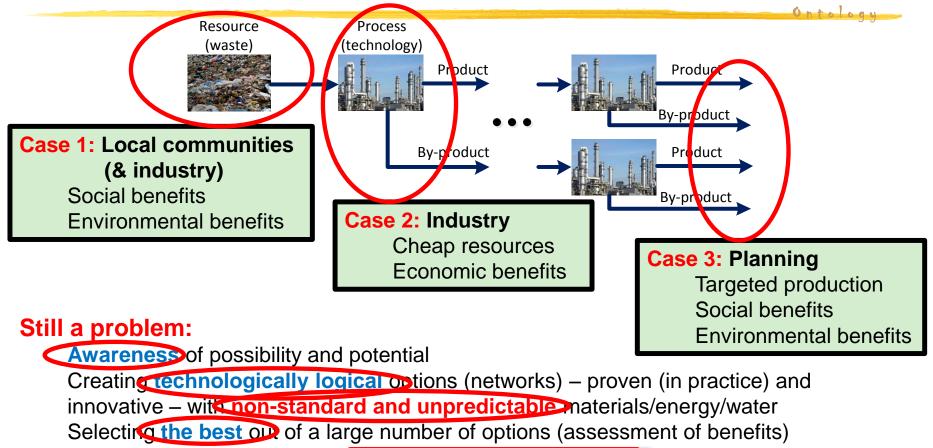


Industrial Symbiosis

Industrial **networks** set to trade material, energy and water produced from **waste** and to gain **economic**, **environmental** & **social** benefits

Ad-hoc networks:

- Confined geographical environment (focus on local communities)
- Short life-time, unpredictable quantities, non-standardised composition
- Difficult to predict benefits
- Strong environmental expectation
- Large number of options which have to satisfy technological requirements

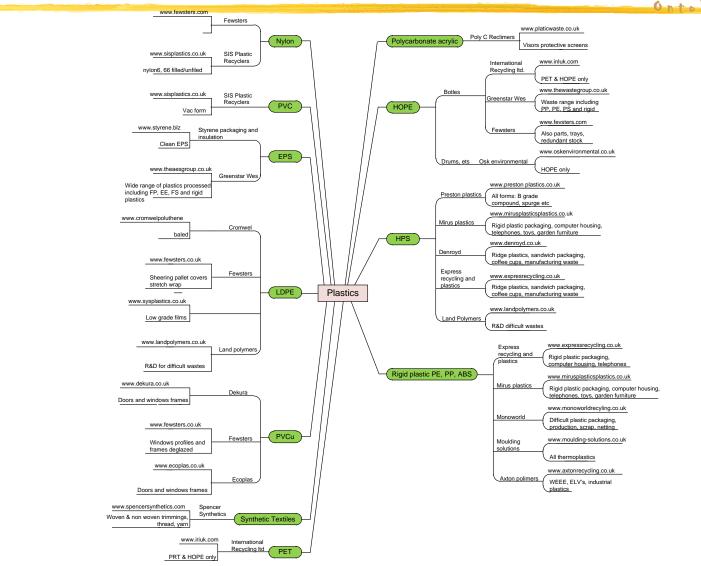


Raafat, T., F. Cecelja, N. Trokanas and B. Xrisha (2013). *An Ontological Approach Towards Enabling Processing* **Computers & Chemical Engineering**, 59, pp 33-46.

IS Potential

Ontology engineering

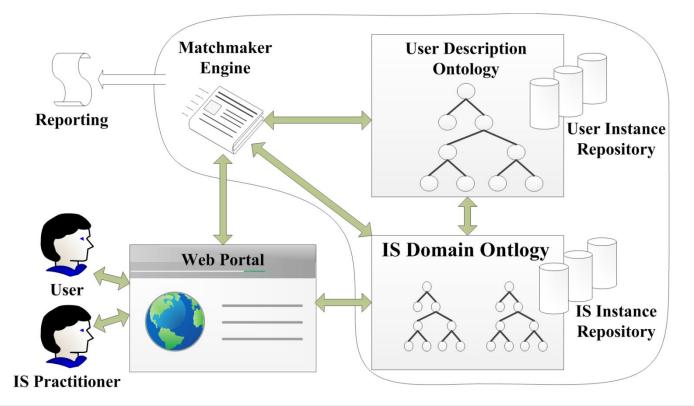
Current Operation:


Manual by rained practitioners (limited scope, expensive, not innovative) Promotion: vord of mouth, workshops, one-to-one contact Assessment of benefits: mostly from past experience & rule-of-thumb

Raafat, T., F. Cecelja, N. Trokanas and B. Xrisha (2013). *An Ontological Approach Towards Enabling Processing*

Complexity of IS

Cecelja, F., T. Raafat, N. Trokanas, S. Innes, A. Yang, M. Smith, Y. Zorgios, X. Bymi, Z. Palaskas, N. Markatos and A. Kokossis (2013). *eSymbiosys: a technology-enabled industrial symbiosis targeting SMEs and innovation*. GIN2012 Norway

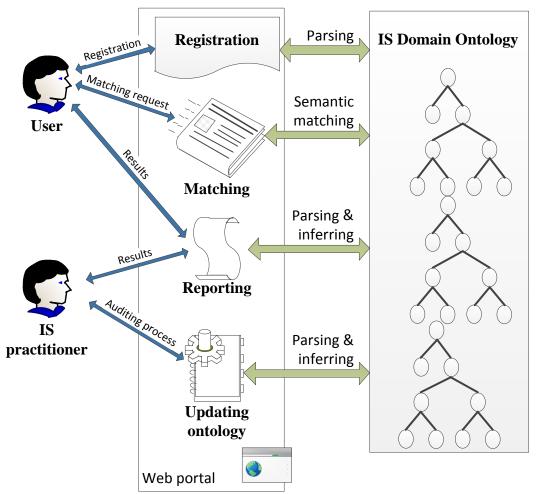


eSymbiosis Platform: Concept

Web: easier/cheaper access, supports informed decision at any stage of IS process, and easier to promote by its nature

Semantic: proposing technologically sound options, proposing innovative options beyond past and proven experience, justifies options and enables prediction of benefits

IT: easy collection of data, better monitoring, faster and more accurate reporting,



Cecelja, F., T. Raafat, N. Trokanas, S. Innes, A. Yang, M. Smith, Y. Zorgios, X. Bymi, Z. Palaskas, N. Markatos and A. Kokossis (2013). *eSymbiosys: a technology-enabled industrial symbiosis targeting SMEs and innovation*. GIN2012 Norway

Sesymbiosis Platform: Functionality

- Registration: explicit knowledge (data) acquisition
- Matching: formation of symbiotic networks and assessment of economic, environmental (and social) opportunities with justification
- Reporting: various levels and types of reports are crated in the process of IS trading
- Updating: technical provision for ontology update is implemented, auditing is still to be defined

Cecelja, F., T. Raafat, N. Trokanas, S. Innes, A. Yang, M. Smith, Y. Zorgios, X. Bymi, Z. Palaskas, N. Markatos and A. Kokossis (2013). *eSymbiosys: a technology-enabled industrial symbiosis targeting SMEs and innovation*. GIN2012 Norway

How Does it Help SMEs?

SME characteristics:

Limited or no awareness of IS

Limited or no awareness of benefits

Limited resources: financial (time, manpower to start and to manage IS process), expertise (waste composition, technology ability and limitations)

eSymbiosis platform as an enabler:

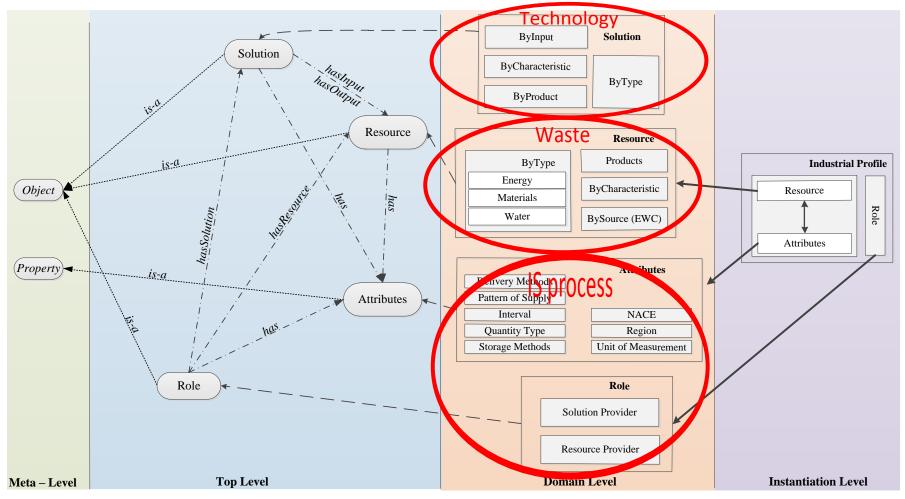
WEB availability supports/enables promotion of IS (existence of IS and availability of past successful stories)

Test trial with the platform (without obligation to participate) provides the insight into potential opportunities

Justification of options quantifies possible benefits (tangible figures)

Access and participation registration are both short, cheap and constantly available

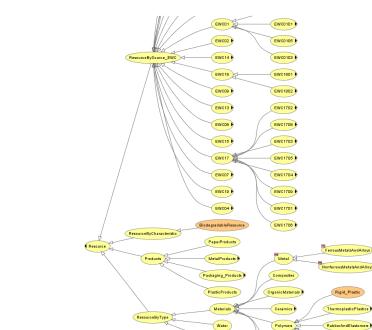
The platform addresses issues related to **linguistic** and/or **expertise** barriers



Assures **technological** and **operational** relevance between resources: embedded in the structure of ontology:

UNIVERSITY OF

Trokanas, N., T. Raafat, F. Cecelja, A. Kokosis, and A. Yang, *Semantic Formalism for Waste and Processing Technology Classifications Using Ontology Models*. Computer-Aided Chem. Eng., 2012. 30: p. 167 - 171.


Characterisation (explicit)

Waste :

Property	Feature
hasQuantity	Operational, Environmental
hasProcessingPrice	Environmental, Economic
hasAnnualCost	Environmental, Economic
isValidFrom	Operational
isValidUntil	Operational
hasName	Operational
isBiodegradable	Operational, Environmental
isHazardous	Environmental, Operational
embededCarbon	Environmental

IS operation:

Property	Feature
geo:Lat	Operational, Environmental
geo:Long	Environmental, Economic
belongsToIndustry	Environmental, Economic
hasStorageCapacity	Operational
hasStorageMethod	Operational
hasDeliveryMethod	Operational, Environmental
isHazardous	Operational, Economic

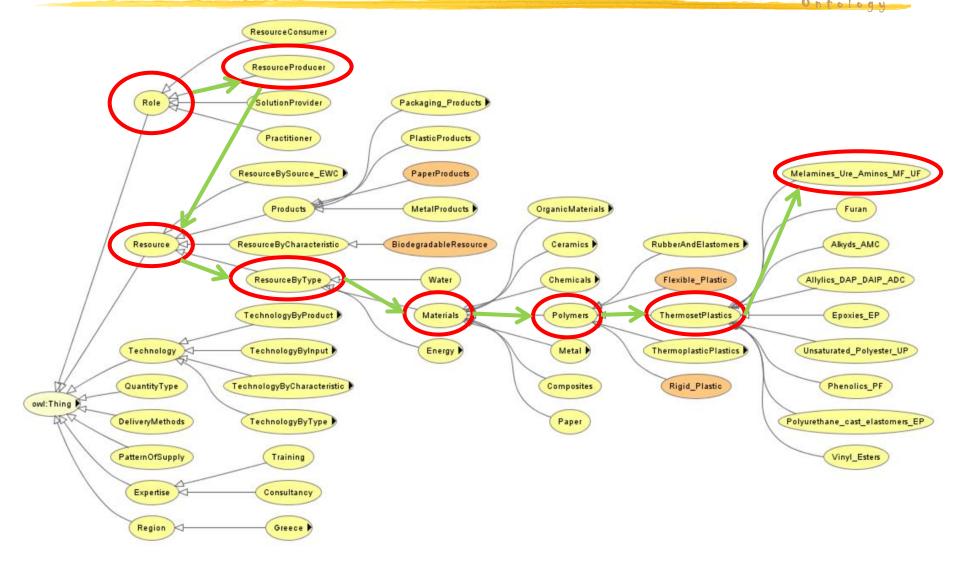
ThermosetPlastics

Flexible_Plastic

Chemicals

Paper

Energy)


Technology:

Property	Feature
hasQuantity	Operational, Environmental
hasProcessingPrice	Environmental, Economic
hasCO ₂ emission	Environmental, Economic
isValidFrom	Operational
isValidUntil	Operational
hasByProduct	Operational, Environmental
isHazardous	Operational, Economic
hasPatternOfSupply	Operational
hasName	Operational
needsEnergy	Operational, Environmental
needsWater	Operational, Environmental
hasConversionRate	Operational, Environmental

Raafat, T., F. Cecelja, N. Trokanas and B. Xrisha (2013). *An Ontological Approach Towards Enabling Processing Technologies Participation in Industrial Symbiosis*, *Computers & Chemical Engineering*, 59, pp 33-46.

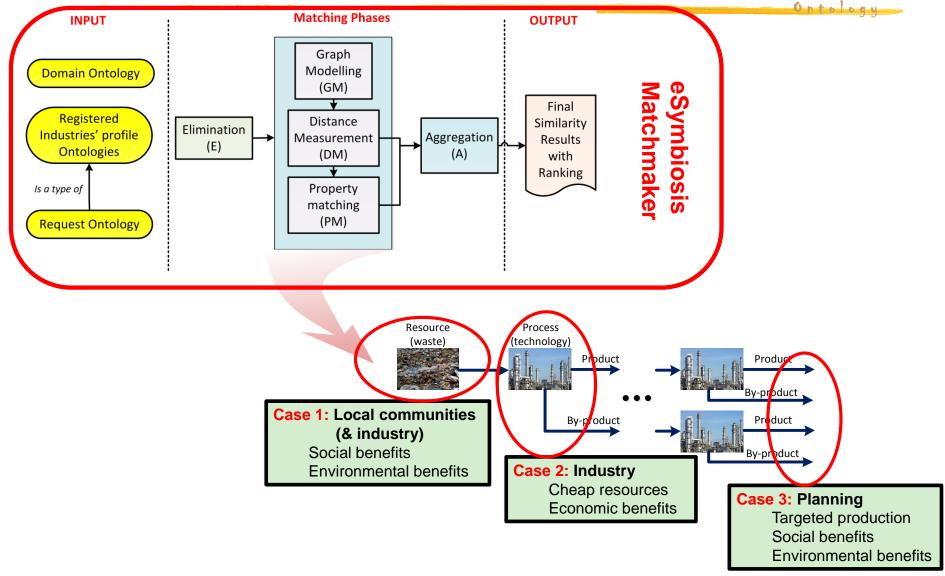
Data Acquisition (explicit)

Trokanas, N., T. Raafat, F. Cecelja, A. Kokosis, and A. Yang, *Semantic Formalism for Waste and Processing Technology Classifications Using Ontology Models*. Computer-Aided Chem. Eng., 2012. 30: p. 167 - 171.

eSymbiosis Ontology Metrics

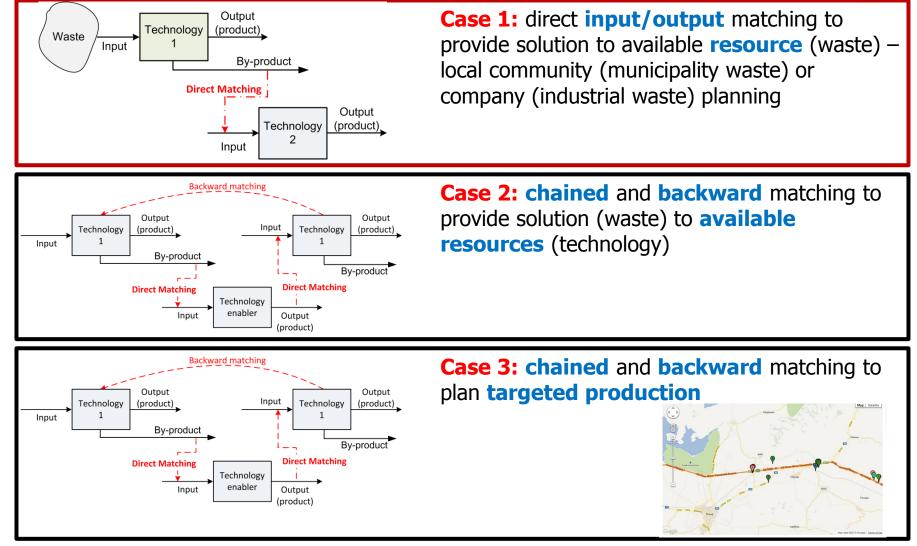
Targets

- Processing Technologies = 10
- Waste Streams = 5


Metrics

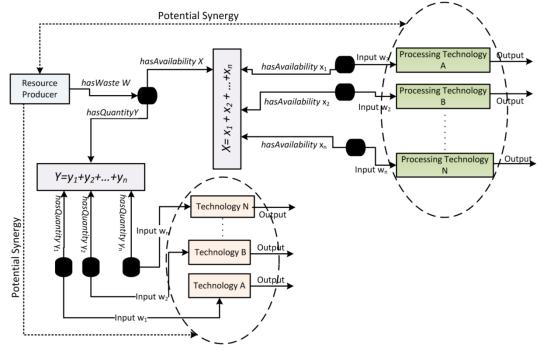
- Number of concepts ≈ 2000
- Processing Technologies ≥ 60
- Waste Streams = 20
- Materials Streams = 8

Matching


Trokanas, N., F. Cecelja and T. Raafat (2014). *Semantic Input/Output Matching for Waste Processing in Industrial Symbiosis*, *Computers & Chemical Engineering*, 66, pp 259 - 268.

Network Formation

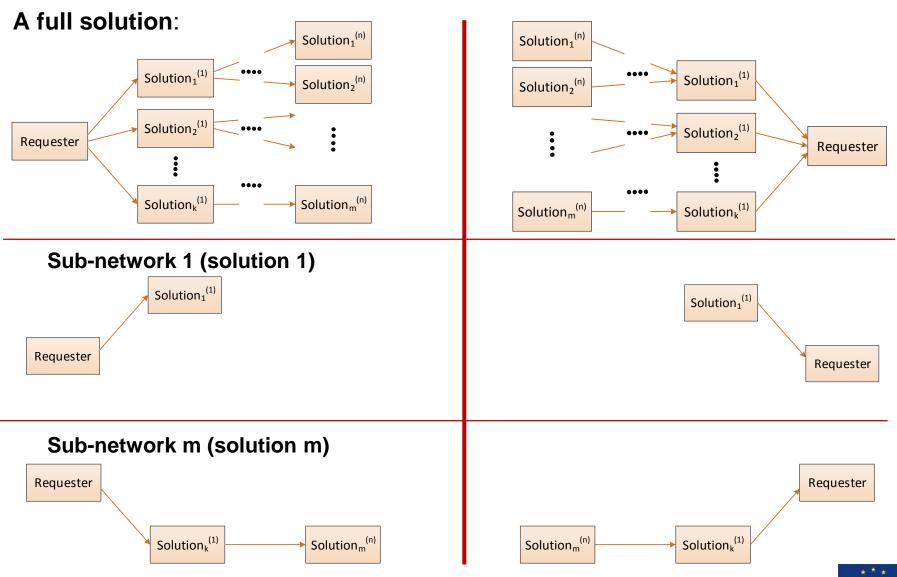
Cecelja, F., N. Trokanas, T. Raafat, A. Korkofigas and A. Kokossis (2013). *Ontology Engineering for the Development of Industrial Symbiosis Networks*. 2013 AIChE Annual Meeting. San Francisco, USA



Partial matching by property decomposition:

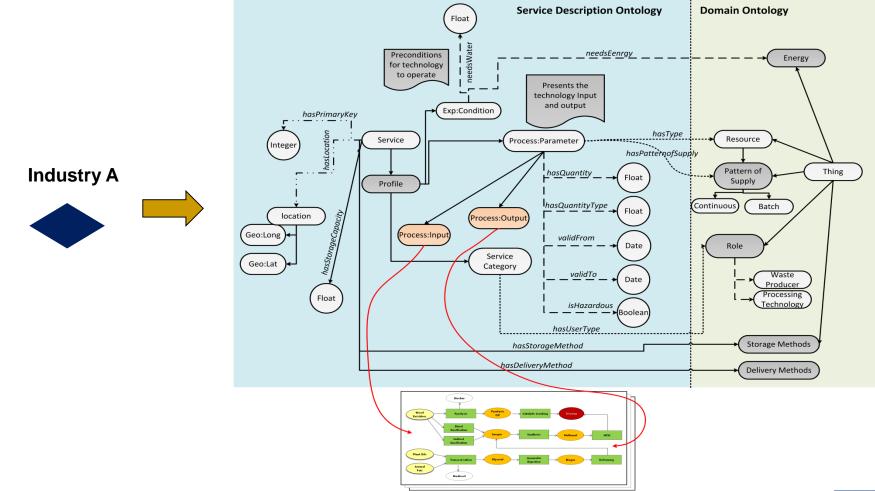
$$\sum_{k=1}^{K} r_{i,k}(S_i^I, k) \le r_i^I$$
, *K* – level of decomposition of property *i*

We use *hasQuantitiy* and *hasAvailability* with inclusion of transportation (*hasLocation*) and storage (*hasStorage*).



Trokanas, N., F. Cecelja and T. Raafat (2014). *Semantic Input/Output Matching for Waste Processing in Industrial Symbiosis*, *Computers & Chemical Engineering*, 66, pp 259 - 268..

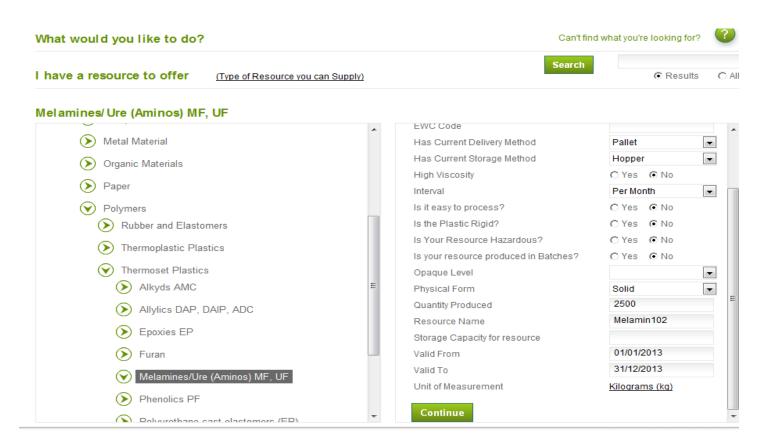
Solution Structure



Modelling/Optimization

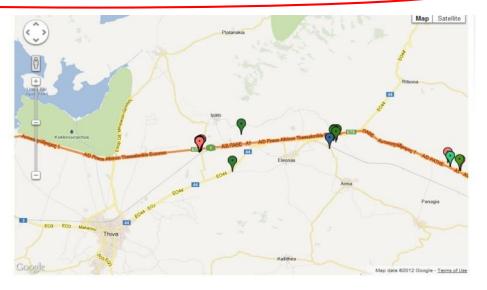
OWL-S service description ontology used to integrate companies into networks and to keep record of properties (or models) for each company in the network

UNIVERSITY OF



Trokanas, N., F. Cecelja and T. Raafat (2014). *Semantic Input/Output Matching for Waste Processing in Industrial Symbiosis*, *Computers & Chemical Engineering*, 66, pp 259 - 268..

Waste producer: a Pulp manufacturer and has 300 tonnes/year of waste registered as wood resource.



Already registered users (after elimination):

User ID	User Type	Resource/Solution	Quantity	ValidFrom	ValidTo	Lat	Lon	PoS
1	RP	Wood	300	07/06/2013	06/04/2017	38.330	23.674	В
2	RP	EWC030301	440	21/02/2014	10/10/2017	38.320	23.622	В
3	RC	EWC030104	230	21/10/2014	13/09/2016	38.310	23.558	С
4	RC	Wood	700	18/02/2016	25/10/2018	38.339	23.609	С
5	RP	EWC030305	190	03/03/2015	10/07/2017	38.360	23.612	С
6	RP	Wooden Packaging	250	05/10/2015	05/06/2018	38.342	23.601	С
7	RC	EWC030307	560	16/10/2015	24/07/2018	38.326	23.506	С
8	SP	Anaerobic Digestion	1200	23/10/2015	11/12/2017	38.327	23.590	В
9	RP	EWC030101	100	10/12/2013	<u>12/05/2017</u>	38.346	23.607	С
10	SP	Wood Incineration	1000	26/07/2013	08/06/2016	38.322	23.613	В

Onto

Matching:

User ID	User Type	Resource/Solution	Quantity	ValidFrom	ValidTo	Lat	Lon	PoS
3	RC	EWC030104	230	21/10/2014	13/09/2016	38.310	23.558	С
4	RC	Wood	700	18/02/2016	25/10/2018	38.339	23.609	С
7	RC	EWC030307	560	16/10/2015	24/07/2018	38.326	23.506	С
8	SP	Anaerobic Digestion	1200	23/10/2015	11/12/2017	38.327	23.590	В
10	SP	Wood Incineration	1000	26/07/2013	08/06/2016	38.322	23.613	В

Similarity results:

User ID	User ID Resource/Solution	
10	Wood Incineration	0.88
8	Anaerobic Digestion	0.81
4	Wood	0.78
7	EWC030307	0.78
3	EWC030104	0.71

CO₂ saving:

User ID	Suggested Resource	Requested Resource	Quantity Exchanged	EC of suggested resource	EC of Requested Resource	Total EC (requested)	Total EC (suggested)	CO ₂ Saving (tonCO ₂)
4	Wood waste	Wood	440	0.2	0.46	202.4	88	114.4
7	Wood waste	EWC030307	440	0.2	1.00	440	88	352

0-n-t

Final results:

User ID	Resource/Solution	Similarity	CO ₂ Saving	Landfill Diversion	Virgin Materials Saved
7	EWC030307	0.78	352	-	-
4	Wood	0.78	114.4	440	440
10	Wood Incineration	0.88	0	-	-
8	Anaerobic Digestion	0.81	0	-	-
3	EWC030104	0.71	0	-	-

IS domain ontology has been designed, implemented and exhaustively tested for IS performance

IS matchmaker has been designed, implemented and tested for IS performance

eSymbiosis platform has been integrated and exhaustive testing is taking place

Acknowledgement

To the eSymbiosis partners (along with UNIVERSITY OF : SURREY

NTUA:

AVCOSystems

PI Consulting:

CLMS

avco systems

I.T. | SOFTWARE | DEVELOPMENT

... and the sponsor

