

SYMBIOSIS INTERNATIONAL CONFERENCE 2014
19-21 June 2014, Athens, Greece.

Greenhouse gas assessment of olive oil in Portugal addressing the valorization of olive mill waste

F. Figueiredo¹, P. Marques¹, É.G. Castanheira¹, L. Kulay^{1,2} and <u>F. Freire¹</u>

http://www2.dem.uc.pt/CenterIndustrialEcology

¹ ADAI-LAETA, Center for Industrial Ecology, Department of Mechanical Engineering, University of Coimbra Rua Luís Reis Santos, 3030-788 Coimbra, Portugal

² Group of Pollution Prevention GP2, Chemical Engineering Department University of Sao Paulo Sao Paulo, Brazil

Outline

- Introduction
 - Motivation
 - Objective
- Methods
 - Life-Cycle Model and Inventory
 - Multifunctionality
- Results
- Conclusions

Motivation

• Olive cultivation and olive oil extraction are important activities in Portugal and other Mediterranean countries.

In 2013 represented **343 million euro**

Olive oil production in Portugal

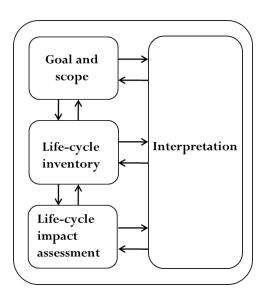
Three-phase extraction

Two-phase extraction

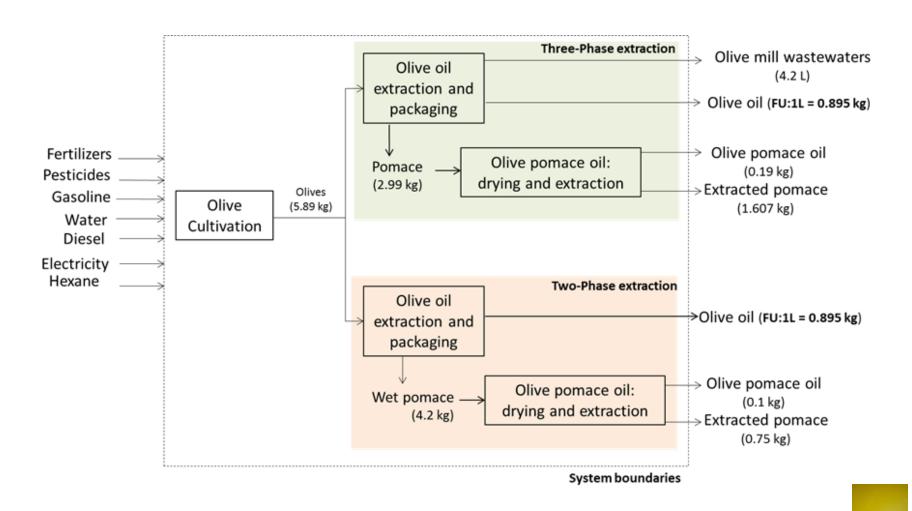
(olive oil; **pomace**; olive mill wastewaters)

(olive oil; **wet pomace**)

<u>can be recovered</u> (chemical extraction, with hexane)


olive pomace oil and extracted pomace

Main Objective


• Present a comparative a GHG life-cycle assessment (LCA) of olive oil produced from three and two-phase extraction mills, addressing the valorization of olive pomace (produced with olive oil) to produce olive pomace oil and extracted pomace

LCA methodology

Life-cycle model

Inventory - Cultivation

Inputs		Intensive producer	Units (per ha)
Fertilizers			
	N	110	kg
	Р	48.0	kg
	K	129	kg
	Urea	37.5	kg
	Borum	0.47	kg
Pesticides (a.s.)			
	Copper oxychloride	10.0	kg
	Tubeconazol	0.15	kg
	Glyphosate	2.90	kg
	Dimethoate	3.60	kg
Energy			
	Diesel	86.0	L
	Gasoline	14.0	L
	Electricity	880	kWh
Water		2000	m^3

- An intensive cultivation system
- 71% of the total olive production in Portugal in 2013
- require irrigation
- High level of fertilization and phytosanitary control
- Productivity of about 10 tonnes per hectare

Inventory - extraction

Olive oil

Inputs	Three-phase	Two-phase	Unit
inputs	olive mill	olive mill	(per L)
Olives	5.89	5.89	kg
Electricity	0.269	0.269	kWh
Propane	0.01	-	kg
Water	4.82	1.24	L
Outputs			
Olive oil	1.00	1.00	L
Pomace	2.99	4.2	kg

- The efficiency was considered similar from both types of extraction;
- Two-phase extraction originates olive oil and wet pomace with 80% moisture (mc wb), which hinders transportation.
- Three-phase extraction generate olive oil, pomace (40% mc wb) and olive mill wastewater (aerobic lagoons).

Olive pomace oil

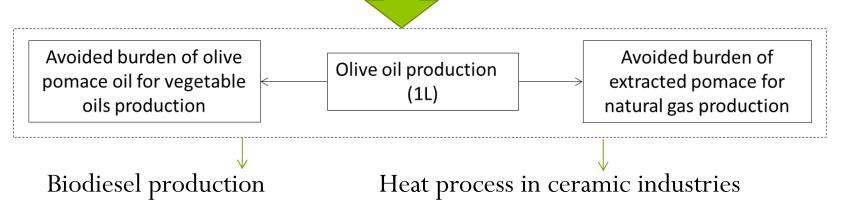
Inputs	Three-phase olive pomace oil mill	Two-phase olive pomace oil mill	Units (per t)
Olive pomace	16	41	t
Electricity	78	95	kWh
Diesel	20	50	L
Hexane	1.1	1.1	kg
Extracted pomace	0.6	1.85	t
Products			
Extracted pomace	8.60	7.35	t
Olive pomace oil	1	1	t

- Drying of pomace from two-phase mill requires more energy
- Pomace from two-phase mill originates less extracted pomace and olive pomace

Multifunctionality: price based allocation vs. substitution ("avoided burdens") (1)

Olive oil production is a multifunctional process

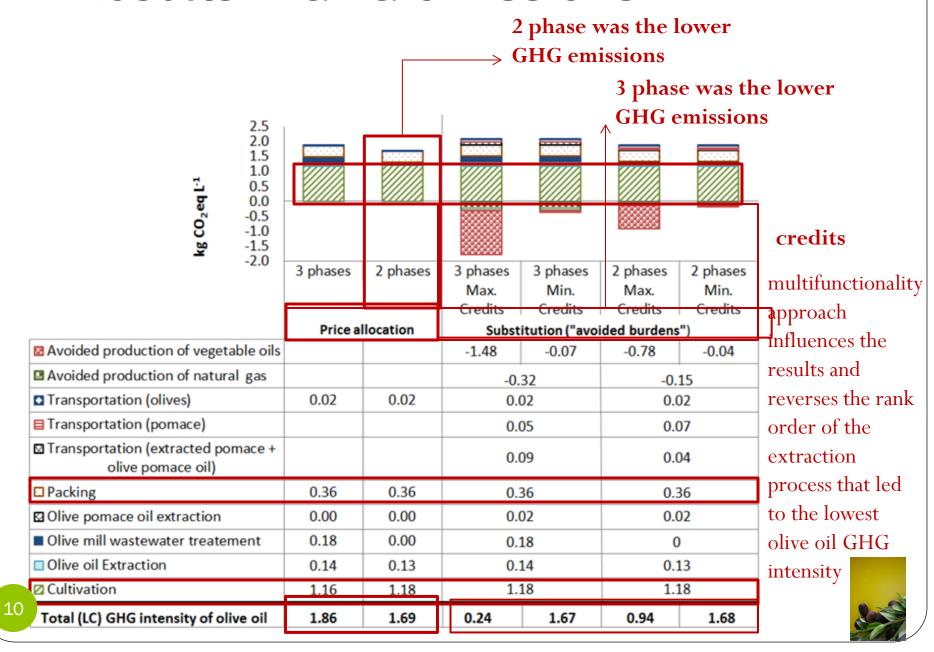
• Price allocation:

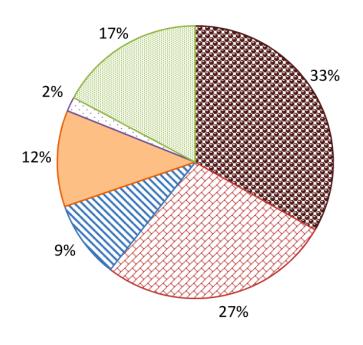

	Туроlоду	Co-product	Mass quantities (kg/L _{olive oil})	Price allocation			
				Price (€/t)	Factor		
	2 phaga	Olive oil	0.895	5587	98.5%	olive oil is 220	
Olive oil	3 phase	Pomace	2.99 ^(b)	25	1.5%	higher than pomace	
extraction	2 phaga	Olive oil	0.895	5587	99.6%	olive oil is 1100	
	2 phase	Wet Pomace	4.2 ^(c)	5	0.4%	higher than pomace	
						ingher than pomace	

 Price allocation in olive oil production is approximately the same that allocating all impacts to olive oil

Multifunctionality: price based allocation vs. substitution ("avoided burdens") (2)

• **Substitution** considers that there is an alternative way of generating the exported functions → co-products


That are used in other system that is out of the boundaries of the first one


The credits for the avoided-burdens should be subtracted from the total burdens of the olive pomace oil extraction process

Results - GHG emissions

Cultivation results – Main contributors to GHG emissions

- Fertilization field emissions
- ☑ Fertilizers production
- Pesticides production
- Diesel (production and combustion)
- ☐ Gasoline (production and combustion)
- Electicity

Conclusions (1)

- Cultivation was the life-cycle phase that contributes more to the total GHG intensity of olive oil production, followed by packing;
- Multifunctionality approaches significantly influences the results and even reverses the rank order of the extraction process that led to the lowest olive oil GHG intensity;
- **Price allocation**: olive oil from **two-phase** extraction has the **lowest GHG** emissions;
- "Avoided burdens approach": olive oil from threephase extraction has the lowest GHG emissions;

Conclusions (2)

- Results with "avoided burdens" are highly dependent on the credits associated with the virgin oil (there is a huge variation in the literature) displacing olive pomace oil;
- This study shows the **importance** of **olive pomace valorization** to **promote an industrial ecology system** in olive oil chain and **reduce the life-cycle GHG** intensity of **olive oil**;
- Work within the on-going project (ECODEEP) supporting this research is addressing other types of wastewater treatment systems and environmental impact categories.

SYMBIOSIS INTERNATIONAL CONFERENCE 2014 19-21 June 2014, Athens, Greece.

Thank you, Questions and Comments

Greenhouse gas assessment of olive oil in Portugal addressing the valorization of olive mill waste

F. Figueiredo, P. Marques, É.G. Castanheira, L. Kulay and <u>F. Freire</u>

http://www2.dem.uc.pt/CenterIndustrialEcology

Acknowledgements

This research was supported by project ECODEEP (Eco-efficiency and Eco-management in the Agro Industrial sector, FCOMP-05-0128-FEDER-018643), EMSURE - Energy and Mobility for SUstainable Regions (CENTRO-07-0224-FEDER-002004) and the Portuguese Science and Technology Foundation projects: PTDC/SEN-TRA/117251/2010 and PTDC/EMS-ENE/1839/2012.

