National Technical University of Athens School of Chemical Engineering Unit of Environmental Sciences and Technology

Industrial Symbiosis as a tool for sustainable development

Professor Maria Loizidou

School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, GR- 157 80 Athens, Greece

19 June 2014

EU-27 physical trade balance with the rest of the world 2011

Circular Economy

Industrial Symbiosis

What is Industrial Symbiosis?

The sharing of services, utility, and by-product resources among industries in order to add value, reduce costs and improve the environment

There are three primary sectors for resource exchange:

- √ By-product and waste exchange
- ✓ Utility/infrastructure sharing such as energy, water, and wastewater
- ✓ Joint provision of services meeting common needs across firms for ancillary activities such as fire suppression.

Eco-industrial parks

An **eco-industrial park** is a community of manufacturing and service businesses located together on a common property.

Members seek enhanced environmental, economic, and social performance through collaboration in managing environmental and resource issues

Identified Industrial Parks

The eSymbiosis project

Development of knowledge-based web services to promote and advance Industrial Symbiosis in Europe (LIFE09 ENV/GR/000300)

The project aims to develop a knowledge-based service that will promote, demonstrate and advance Industrial Symbiosis (IS) in Europe.

http://www.esymbiosis.gr/

The eSymbiosis project

The **eSymbiosis project** is implemented in the Prefecture of Viotia, a region close to Attica and the host of numerous industries.

Profile of the study area

Some examples of industries in the area

Metallurgical industries 26%

- √ Manufacture of basic iron and steel and of ferro-alloys
- ✓ Manufacture of tubes, pipes, hollow profiles and related fittings, of steel
- ✓ Manufacture of basic precious and other non-ferrous metals
- √ Casting of metals
- √ Manufacture of structural metal products
- √ Treatment and coating of metals; machining

Some examples of industries in the area

Chemical industries 20%

- √ Manufacture of basic chemicals
- √ Manufacture of pesticides
- ✓ Manufacture of paints, varnishes and coatings
- ✓ Manufacture of soap and detergents
- ✓ Manufacture of basic pharmaceutical products
- √ Manufacture of rubber products

Some examples of industries in the area

Food & Beverage Industry 11%

- √ Processing & preserving of meat
- ✓ Processing & preserving of fruit &vegetables
- Manufacture of oils and fats
- √ Manufacture of dairy products
- √ Manufacture of grain mill products
- √ Animal feed production
- √ Manufacture of soft drinks

Waste, LoW, By-products, EoW criteria

Directive 2008/98/EC:

Waste means any substance or object which the holder discards or intends or is required to discard

List of Waste: Decision 2002/532/EC

By-products – Article 5(1) 2008/98/EC

End-of-Waste criteria – Article 6(1) and 6(2)

List of Waste LoW

The List of Waste is meant to be a reference nomenclature providing a common terminology throughout the Community with the purpose to improve the efficiency of waste management activities.

The List of Waste serves as a common encoding of waste characteristics in a broad variety of purposes like classification of hazardous wastes. Assignment of waste codes has a major impact on the transport of waste, installation permits (which are usually granted for the processing of specific waste codes), decisions about recyclability of the waste or as a basis for waste statistics

By-product

According to Article 5 par. 1:

"a substance or object, resulting from a production process, the primary aim of which is not the production of that item, may be regarded as not being waste but as being a by-product only if the following conditions are met:

- ✓ further use of the substance or object is certain;
- ✓ the substance or object can be used directly without any
 further processing other than normal industrial practice;
- ✓ the substance or object is produced as an integral part of a production process; and
- ✓ further use is lawful

EoW criteria

According to **Article 6**:

"...certain specified waste shall cease to be waste when it has undergone a recovery, including recycling, operation and complies with specific criteria to be developed in accordance with the following conditions:

- ✓ the substance or object is commonly used for specific purposes,
- ✓ a market or demand exists for such a substance or object;
- ✓ the substance or object fulfils the technical requirements for the specific purposes and meets the existing legislation and standards applicable to products; and
- ✓ the use of the substance or object will not lead to overall adverse environmental or human health impacts"

EoW criteria

Waste from Metallurgic companies

Packaging Waste **Batteries** Scrap Sludge from WWTP **Filters**

Some examples of valorisation

- Scrap recycling
- Packaging waste recycling
- Batteries recycling
- Use of sludge as alternative fuel e.g. in cement industries

Waste from Food Industries

Animal Byproducts

Whey from dairy industries

Pomace from oil olive production

Fruit and vegetable waste

Spent grains from brewing

Packaging waste

Sludge from WWTP

Expired food

Filters

Some examples of valorisation symbols

- Packaging waste recycling
- Use of sludge for composting and anaerobic digestion for biogas production
- Whey for whey protein production
- Pomace for the production of olive-pomace oil and wood pomace
- Spent grains from brewing for animal feed
- Damaged fruit and vegetables for composting or anaerobic digestion
- Animal by-products for collagen production, blood for production of bioactive compounds

Key issues for successful industrial symbiosis

- ✓ Industry leadership
- ✓Willingness to cooperate
- Synergy development activities
- ✓ Spatial planning
- ✓ Design and choice of technology production
- Consideration of alternative production methods
- ✓ Existence of appropriate legislative framework and its proper implementation
- ✓ Awareness raising of the actors involved
- ✓ Funding and promotion.

Benefits

Environmental, social & financial benefits

- Emissions reduction
- ✓ Diversion of organic and industrial waste from landfills
- Resource savings
- Reduction of raw material cost through byproduct valorisation
- Extra revenues
- Economy boosting
- Development of new technologies for the recovery of waste
- Private Investment
- Jobs creation

Thank you for your attention

Prof. Maria Loizidou

Unit of Environmental Science and Technology (UEST), School of Chemical Engineering, National Technical University of Athens (NTUA)

mloiz@chemeng.ntua.gr

http://uest.gr/

