

### SYMBIOSIS International Conference 2014, 19-21 June 2014, Athens



INDUSTRIAL SYMBIOSIS OF BIODIESEL PLANTS AND AGRICULTURAL BIOMASS BASED ENERGY PLANTS VIA CO-GASIFICATION OF CRUDE GLYCEROL WASTE STREAMS WITH AGRICULTURAL RESIDUES: THE GLYCO BIO-DIESEL PROJECT

P. MANARA, D. ROVAS, A. ZABANIOTOY

BIOMASS GROUP, DEPARTMENT OF CHEMICAL ENGINEERING, ARISTOTLE UNIVERSITY OF THESSALONIKI, P. O. BOX: 455, 54124 THESSALONIKI, GREECE



Prof. Anastasia Zabaniotou







#### **Biomass and Waste Group**



Laboratory of Chemical Processes and Plant Design
Department of Chemical Engineering
Aristotle University of Thessaloniki.

- □ Applied & basic research concerning the thermochemical conversion of biomass and wastes into energy and high added value materials.
- ☐ Thermochemical Valorization of Biomass and Waste both by pyrolysis and gasification: Lab and Pilot scale Experiments & Modeling and simulation of such processes using commercial softwares.
- Assessment of bio-energy plants and renewable energy sources units through detailed techno-economic studies
- **■** Design of integrated energy systems of conjunct thermochemical processes with ICEs and fuel cells.



#### Goal of Biomass Group: Research Activities



**Development** of new processes & products for valorisation of biomass and waste





Thermochemical
Conversion
of recyclable
and renewable
materials



**ENERGY** 

**BIOFUELS** 

**MATERIALS** 

**H2** 

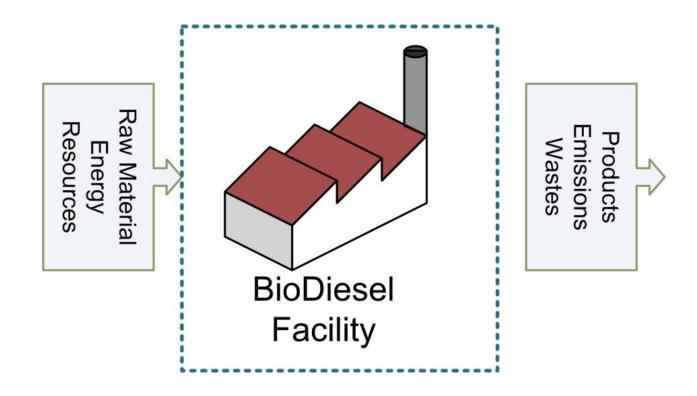
**GREEN TECHNOLOGY** 

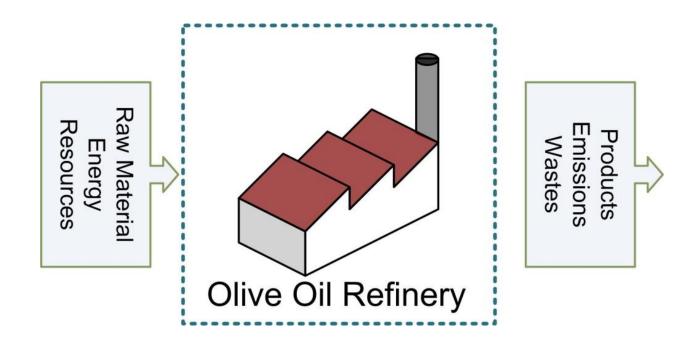
GREEN PRODUCTS

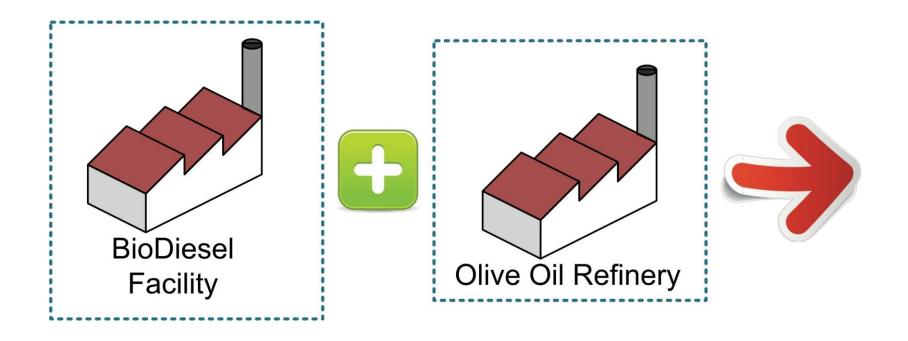
### PRESENTATION CONTENTS

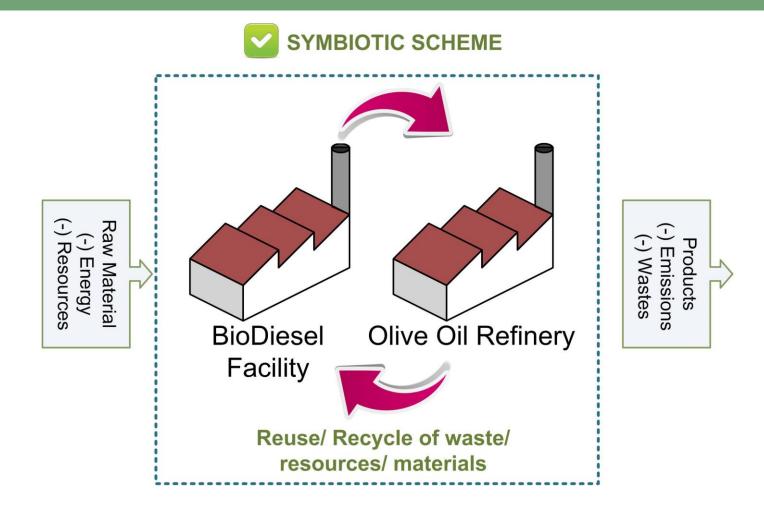
- BIODIESEL & GLYCEROL PRODUCTION
- □ OLIVE KERNELS GENERATION & MANAGEMENT
- □ INDUSTRIAL SYMBIOSIS CONCEPT
- BIODIESEL PLANT INPUTS/OUTPUTS
- □ THE PROPOSED SYMBIOTIC SCHEME
- MATERIALS AND METHODS
- ENVIRONMENTAL PERFORMANCE
- CONCLUSIONS

### BIODIESEL & GLYCEROL PRODUCTION


- One of the best alternatives to efficiently reduce our dependence on fossil fuels
- □ In 2013 in EU almost 14Mtoe of biodiesel was used that represent an annual increase of 3% since 2012
- EU target to incorporate bio-fuels into the transportation at a rate of 10% by the year 2020
- Transesterification of vegetable oils and animal fats
- Biodiesel production generates about 10 wt% of crude glycerol. <u>As biodiesel production increases, so does</u> <u>production of the primary byproduct</u>


#### BIODIESEL & GLYCEROL PRODUCTION


- The past years glycerol was a key product in many industries (e.g. cosmetics) and a high added value product
- The tremendous growth of the biodiesel industry created a glycerol surplus that has resulted in a decrease in crude glycerol prices
- The once considered valuable by-product is becoming a waste stream with a disposal cost attributed to it
- Waste glycerol valorization on-site for energy production is a key management strategy related to sustainability and environmental performance of the biodiesel production system

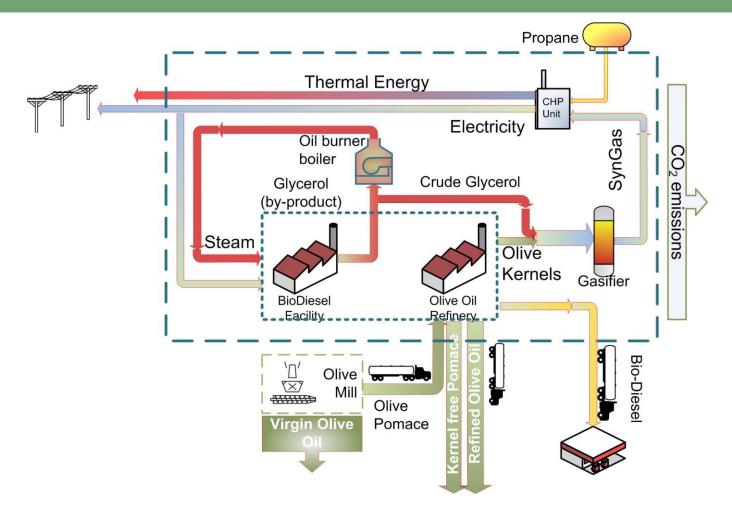

### OLIVE KERNELS GENERATION & MANAGEMENT

- Olive kernels is a waste stream of the olive extraction industry
- On average the process of 1 t of olive fruit is generating 125 kg of olive kernel
- The Olive Kernels are extracted from the moist pomace at Olive Oil Refineries
- □ <u>Current Olive Kernel management practice</u> Combustion in furnaces or open fireplaces (heat & emits a thick smoke rich in CO<sub>2</sub> and particles)
- Take into consideration the olive oil yield in the Mediterranean countries it is quite obvious why the olive kernel disposal and management is still considered a major problem by the farmers and the olive oil industries









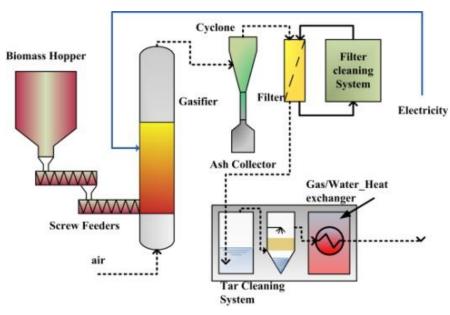

### BIODIESEL PLANT INPUTS/OUTPUTS

□ Energy Requirements

- Steam: 0.337kWh/lt of Biodiesel
- Electricity: 0.0255kWh/lt of Biodiesel
- □ Biodiesel Production: 3,000 m<sup>3</sup>
- □ Crude Glycerol Generation: ~ 400 m³

### THE PROPOSED SYMBIOTIC SCHEME




### MATERIALS AND METHODS

- Innovative co-gasification unit of crude glycerol and waste biomass
- Feedstock Characteristics and synthesis gas Yield

# Innovative co-gasification unit of crude glycerol and waste biomass

The Gasification System Layout

The SMARt-CHP System





SMARt-CHP Project, LIFE08 ENV GR 000576 SMARt-CHP, http://smartchp.eng.auth.gr

## Innovative co-gasification unit of crude glycerol and waste biomass

- Bubbling Fluidized Bed Gasifier (BFBG)
  - bottom part (fluidized bed)
  - upper part (freeboard)
  - feeding system consist of a silo, a biomass hopper and two screw feeders
  - cleansing system of a cyclone and a ash collector, a filter of 99% efficiency and a water scrubber
  - the synthesis gas is entering a heat exchanger to reduce its temperature at the desired levels
- □ A CHP Internal Combustion Engine (ICE)

# Feedstock Characteristics and synthesis gas Yield

- Feedstock: <u>Crude Glycerol & Olive Kernels Mixture</u>
- In order to <u>maintain the rheological characteristics</u> of the mixture at the required levels for its use in the gasifier, the glycerol content in the fuel mix kept less than 25 wt %

| Elementary analysis of the Crude Glycerol/ Olive Kernel (CG-OK) mixture |                    |  |  |  |
|-------------------------------------------------------------------------|--------------------|--|--|--|
|                                                                         | 25 wt % of CG & OK |  |  |  |
| С                                                                       | 47.59              |  |  |  |
| Н                                                                       | 7.14               |  |  |  |
| O (by Difference)                                                       | 44.56              |  |  |  |
| N                                                                       | 0.71               |  |  |  |
| HHV (MJ/kg)                                                             | 20.15              |  |  |  |
| Moisture content (wt%)                                                  | 10.40              |  |  |  |

# Feedstock Characteristics and synthesis gas Yield

□ The gasification temperature set at 800 °C and the equivalence ratio kept constant during operation at ER: 0.3

Synthesis gas Yield (gr/gr of feedstock)

| Gasificatio                                        | n Input | Gasification Yield Synthesis Gas   |                 |       |                |       |                               |                               |  |  |
|----------------------------------------------------|---------|------------------------------------|-----------------|-------|----------------|-------|-------------------------------|-------------------------------|--|--|
| C <sub>67</sub> H <sub>10</sub> O <sub>63</sub> N* | Air     | N <sub>2</sub>                     | CO <sub>2</sub> | со    | H <sub>2</sub> | CH₄   | C <sub>2</sub> H <sub>6</sub> | C <sub>2</sub> H <sub>4</sub> |  |  |
| 1,0                                                | 0,852   | 0,68                               | 0,78            | 0,272 | 0,022          | 0,031 | 0,012                         | 0,003                         |  |  |
|                                                    |         | Synthesis Gas Energy: 4704 (kJ/kg) |                 |       |                |       |                               |                               |  |  |
| *Empirical form                                    | ula     |                                    |                 |       |                |       |                               |                               |  |  |

### ENVIRONMENTAL PERFORMANCE -

#### The current situation

- Input (Biodiesel plant Operation)
  - Energy from Electricity (76MWh)→ CO₂: 74894kg (emission factor, 0.979kg/kWh)
  - Energy from Diesel Oil for Steam (1GWh)  $\rightarrow$  CO<sub>2</sub>: 315261kg (emission factor, 0.2494kg/kWh)
- Output
  - Thermal Energy from Glycerol Combustion,  $\sim$  330t (2.5GWh)  $\rightarrow$  CO<sub>2</sub>: 817826kg (emission factor, 0.338kg/kWh)
  - □ Thermal Energy from Olive Kernel Combustion, ~ 995t (5.4GWh) → CO<sub>2</sub>: 2783341kg (emission factor, 0.508kg/kWh)
  - Biodiesel Energy (28.8GWh) → CO<sub>2</sub>: 390155kg (emission factor, 0.014kg/kWh)
- Total Emission Factor: 0.109kg/kWh

### ENVIRONMENTAL PERFORMANCE - The proposed SYMBIOTIC scheme

□ Gasification "Plant" Yield

(The plant valorizes  $\sim$  995t of Kernels &  $\sim$  330t of crude glycerol)

- Electricity (1.3GWh) → CO<sub>2</sub>: 774741kg (emission factor, 0.585kg/kWh)
- Thermal Energy (3.4GWh)  $\rightarrow$  CO<sub>2</sub>: 2016605kg (emission factor, 0.585kg/kWh)

## ENVIRONMENTAL PERFORMANCE - The proposed SYMBIOTIC scheme

- Input (Biodiesel plant Operation)
  - Electricity from gasification → CO<sub>2</sub>: 44795 kg (emission factor, 0.585kg/kWh)
  - Energy from Glycerol Comb. for Steam → CO₂: 1450565 kg (emission factor, 0.270kg/kWh)
- Output
  - □ Electricity Surplus from ICE (470MWh) → CO<sub>2</sub>: 274216\_kg (emission factor, 0.558kg/kWh)
  - □ Thermal Energy from ICE (3.4GWh)  $\rightarrow$  CO<sub>2</sub>: 2016605kg (emission factor, 0.585kg/kWh)
  - Biodiesel Energy → CO<sub>2</sub>: 1495361 kg (emission factor, 0.052kg/kWh)

## ENVIRONMENTAL PERFORMANCE - The proposed SYMBIOTIC scheme

- □ CO<sub>2</sub> Mitigation
  - □ Electricity from the Grid →

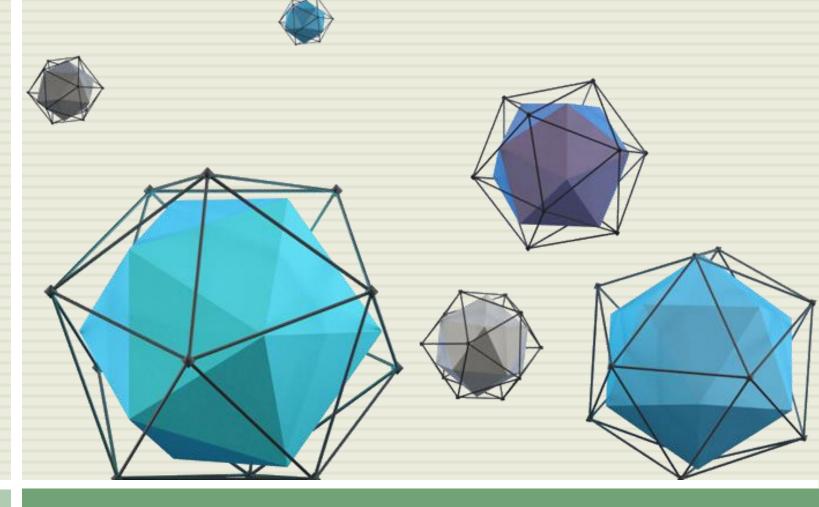
CO<sub>2</sub>: <u>458463</u> kg (emission factor, 0.979kg/kWh)

■ Thermal Energy from Diesel Combustion →

CO<sub>2</sub>: <u>918552</u> kg (emission factor, 0.249kg/kWh)

□ Total Emission Factor: 0.084kg/kWh

### CONCLUSIONS


- The proposed Symbiotic scheme valorizes in total 1,250t of waste streams (995t of olive kernel & 330t of crude glycerol)
- The biodiesel plant could cover its own energy needs by materials that otherwise are considered as waste streams
- The Symbiotic scheme produces an electricity surplus of 470MWh & 1.4GWh of thermal energy that could utilized inside the Biodiesel Plant or in the Olive Oil Refinery

### CONCLUSIONS

- Its environmental efficiency is well established as its total emission factor is minimized by 0.025kg CO<sub>2</sub> per produced kWh.
- Avoids the purification costs of Glucerol and together generates an additional income from the Electricity surplus delivered to the grid
- The Symbiosis concept seeks to improve biodiesel production plant's energy balance, resource efficiency and to offer a solution for waste materials (crude glycerol, agro-wastes) recovery.

### AKNOWLEDGEMENTS

We would like to thank the GLY-CO Bio-Diesel project) co-funded by EU and Greek Ministry of Education, NSRF 2007-2013



### Thank You for your Attention

azampani@auth.gr; azampani@gmail.com