

Ontology Engineering Supporting Industrial Symbiosis

Nikolaos Trokanas, Franjo Cecelja, Tara Raafat

Industrial Symbiosis Requirements

Represent the knowledge for:

Ontology Definition

Explicitly Defined Concepts, Properties etc. Abstract Model and Simplified View of some Phenomenon

Formal, explicit specification of a shared conceptualisation

[Gruber, 1993]

Commonly accepted understanding/knowledge

Machine Readable

Gruber, T.R. 1993, "A translation approach to portable ontology specifications", *Knowledge acquisition,* vol. 5, no. 2, pp. 199-220.

Our Approach

- Our approach was to automate the process
- To achieve this:
 - We need to mimic the way practitioners work
 - Emulate two fundamental aspects that made practitioners essential to the process
 - Knowledge
 - Reasoning

Knowledge

- Different people have expertise in different areas
- Knowledge is being accumulated
- Some knowledge is easily described (explicit)
- Other is hard to put on paper (tacit) and is the most challenging part

Reasoning

- Simply having the knowledge is not enough
- To enable reasoning we need:
 - Knowledge in a format that can be processed
 - A reasoning mechanism in the form of a mathematical algorithm that manipulates the available knowledge and mimics the manual process

The Solution

- Ontology is used for knowledge representation
- A semantic algorithm has been devised for the reasoning and the potential symbiotic synergies
 - This algorithm uses the knowledge modelled in the ontology (tacit) and the knowledge provided by users of the platform
 - Identifies and ranks potential symbiotic synergies

The Solution - Ontology

eSymbiosis Ontology

Registration (1/3)

Registration (2/3)

Registration (3/3)

Semantic Matching

Semantic Matching (technology relevance)

• Distance Measurement Result: 2.5 Dissimilarity → 36% similarity

Semantic Matching (property similarity)

Matching Industry A against Industry B Based on Vector Space Modelling:

Thank you!

ENVIRECO CONSULTING A.E.

CVCO SYSTEMS

