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  Abstract 

Municipal Solid Waste Incineration (MSWI) reduces the mass and volume of the waste by about 70% and 90%, respectively. Next 
to boiler and fly ash, solid MSWI Bottom Ash (BA) makes up for 80% of the remaining material and contains unburned matter, 
glass, ceramics, metals, and minerals. At present BA is used in low-grade applications (such as road base) or landfilled. In order 
to make a higher-end application possible, correlations between physical properties, size fractions, and mineralogical 
composition have been studied. Within the various BA fractions, the different material components possess inherent properties 
affecting their suitability as concrete constituent; convenient material assessment procedures are therefore required to assess 
treatment processes and to guarantee the quality and applicability of the produced material. 
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1. INTRODUCTION 

1.1. MSWI bottom ash 
Municipal solid waste incineration (MSWI) is preferred as 
an alternative to landfilling. In this way, a significant 
reduction of both mass and volume, by approximately 70% 
and respectively 90% [1] is achieved. After collection of the 
municipal solid waste, incineration takes place in a waste-to-
energy plant. Next to energy, the incineration process 
generates a variety of solid residual materials. 20% of these 
are carried from the incinerator by flue gasses, e.g. air 
pollution control residues, fly ash, and boiler ash. The 
remaining 80% of the total volume of by-products is 
accounted for by MWSI bottom ash (BA) [2]. This non-
airborne material comprises ceramics, glass, minerals 
(feldspars, quartz, lime, calcite), ferrous and non-ferrous 
metals, and unburned organic matter [1]. Even though mass 
and volume are reduced significantly, alternative 
applications are needed due to vast production quantities, a 
limited application as a road base material (in the 
Netherlands), landfilling taxes, and stricter legislation [3–5].  
Since BA possesses comparable properties to those of raw 
materials applied in building materials, it has the potential to 
be modified to fit this application [3, 6–8]. Not only does 
this application minimise the need to landfill these materials, 
additionally it reduces the need for raw materials, essentially 
making this a sustainable approach. Nevertheless, due to the 
leaching of contaminants, a well-advised and thoughtful 
treatment of the material is needed in order to comply with 
legislation. 
 
1.2. Treatment towards BA application in concrete 

Of all materials produced worldwide, with an annual global 
production of about 3.8 billion cubic meters, concrete is 
applied twice as much as all other produced materials 
combined, including steel, aluminium, wood, and plastic [9].  

In recent years, both the raw material consumption and the 
reduction of the overall environmental impact of concrete 
has attracted attention [10, 11]. By applying BA in concrete, 
the CO2 production footprint, and landfilling can be reduced 
[1–3, 6]. 
Due to the fact that BA contains leachable salts and heavy 
metals, environmental legislation is leading when replacing 
traditional concrete constituents by treated industrial by-
products [4, 5].  
 
Towards complying with legislation, the BA quality needs 
to be upgraded. To this aim, a number of treatments have 
proven to be effective, such as washing, weathering, 
physical separation, etc. [12]. The efficiency and 
effectiveness of upgrading through 
solidification/stabilization, carbonation [13, 14], weathering 
[15], washing [16–18] to comply with legislation has been 
proven. Additionally, binders used in concrete production 
have the ability to enclose and therefore immobilize part of 
the leachable elements found in BA [19, 20].  
 
In order to apply BA as concrete constituent, the material 
either needs to complement or replace a material in the mix 
design. Multiple studies have investigated replacing 
concrete aggregates with BA [21–27]. Towards upgrading 
and improving applicability, several treatment options have 
been investigated, for instance cement-BA interaction 
properties have been investigated by Pecqueur et al. [28], 
how quenching conditions influence the properties of 
blended cement mortar have been studied by Cheng [29], 
artificial aggregates applying  BA have been created [30] 
and swelling due to metallic aluminium content has been 
investigated by Cioffi et al. [21]. 
 
Concrete, being the most produced material in the world, is 
able to cope with the vast quantities of BA produced. Next 
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to that, application of BA in concrete has the potential to 
comply with legislation when treated correctly [31].  
Instead of applying BA as an inert aggregate or filler, 
application as raw material for cement production or 
pozzolanic material was studied [32, 33]. By useing a 1400 
˚C heat treatment, Lin et al. [34] produced a pozzolanic slag. 
Li et al. [22], Al-Rawas et al. [3], and Juric et al. [34] 
suggest a cement replacement of 30%, 20%, and 15% 
respectively. Additional to an increased reactivity as a result 
of heat treatment, reduced leaching from the BA has also 
been shown in several studies [35–38]. 
 
Due to the heterogeneous character of BA, where the ratio 
of constituents vary (e.g. organic matter, ceramics, glass, 
minerals, and non-ferrous and ferrous metals), the final 
properties of the concrete are affected. Specific treatments 
could therefore be targeted to minimise variations (e.g. 
crushing [39]). Hence this study is aimed at determining the 
underlying properties of the BA in order to be able to 
evaluate and quantify the effectiveness of further treatment 
steps.  
 
2. METHODOLOGY 

2.1. Materials 

The BA fraction considered in this study is one of several 
fractions produced after a prior treatment process [40] : 
1. Weathering for 3-6 months, reducing the materials heavy 

metals leaching and reactivity  
2. Dry separation: extracting large metal fractions by 

overhead magnet, impact crushing reducing the particle 
size to < 40 mm, and ballistic separation into a 0-2 mm 
and 2-40 mm fraction. 

3. Dry separation and recovery of metals from the 2-40 mm 
fraction: secondary treatment with overhead magnets and 
non-ferrous metals recovery through triple eddy current 
magnet systems. Additionally, organics and plastics are 
mostly recovered creating a mineral granulate fraction. 

4. Washing and wet separation, creating a sludge (0-63 
μm), a fine granulate fraction (63 μm-2 mm), a coarse 
granulate fraction (2-40 mm), and a floating organic 
fraction which is refed to the incineration process.  

5. Finally, a last ferrous and non-ferrous metals extraction. 
 
The material under investigation has been sampled 
according to DIN EN 932-1 [41] from a 1 m3 flexible 
intermediate bulk container. 
Prior to further analysis, the material was dried at 105 °C to 
an oven-dry state where a constant mass was reached [42]. 
By doing so, not only a correct particle size distribution 
(PSD) is obtainable, also the effect of agglomeration during 
the sieve analysis is minimised.  
 
2.2. Methods 

Based on EN 933-1 and EN 933-2 [43, 44], the PSD of the 
BA is determined. Consequently, the material is split in 
fractions. Additional sieve sizes were added to the mesh 
sizes described in EN 933-2 [44], increasing the detail of the 

study (22.4 mm, 11.2 mm, 5.6 mm, 2.8 mm, 1.4 mm, 710 
µm, 355 µm, 180 µm, and 91 µm). 
Furthermore, with the naked eye, the 4.0-5.6 mm, 5.6-8.0 
mm, 8.0-11.2 mm, 11.2-16.0 mm, 16.0-22.4 mm, and 22.4-
31.5 mm are hand-sorted based on visual appearance (Fig. 
1) into ceramic and stone, glass, mineral (slag), metals, and 
unburned (plastic, paper, organic) fractions. In the case that 
more than one material is identified in a particle (e.g. glass 
with minerals attached) this is classified by the material 
predominantly present. 
 

 
Fig. 1 Hand sorted fractions: (a) ceramic and stone, (b) glass, 

(c) mineral, (d) metals, (e) unburned 

Despite several prior metal extraction steps using overhead 
magnets, both clean metals and metals embedded in mineral 
fractions can be found. These ferrous metal particles can be 
extracted by running the material over a magnetic drum 
separator. In the laboratory process of magnetic extraction, 
the momentum of particles is avoided by loading a small 
amount of particles on the surface of a permanent magnet 
prior to slowly rotating it upside down. By doing so, an 
optimal and constant extraction is achieved. 
 
A certain amount of mineral particles have been found to be 
extractable by magnet. This fraction will hereinafter be 
referred to as “mineral - extractable”. The remainder is 
referred to as “mineral - non-extractable”.  
 
The specific density of every material fraction is determined 
using a He pycnometer (Micrometrics Accupyc 1340). 
Finally, the water permeable porosity of these fractions is 
determined through hydrostatic weighing according to NT 
Build 492, ASTM C1202, and EN 1097-6 [45–47] after 
vacuum filling the samples with distilled water using: 
 

𝜑𝑣,𝑤𝑎𝑡𝑒𝑟 =
𝑚𝑠 + 𝑚𝑑

𝑚𝑠 + 𝑚𝑤
 𝑥 100 

where: 
φv,water water permeable porosity (%), 
ms surface dried mass of water-saturated sample in air 

(g), 
mw  mass of water-saturated sample in water (g), 
md  mass of oven dried sample (g). 
 

a b c 

d e 
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3. RESULTS AND DISCUSSION 

3.1. Particle size distribution 
The particle size distribution (PSD) of the BA is displayed 
on a logarithmic scale in Fig. 2. The solid lines depict the 
PSD of the initial material (4-31.5 mm).  
For completeness, the dotted lines show the remaining PSD 
of the initial 0-40 mm BA. This material is excluded from 
this particular study. 
 

 
Fig. 2 Particle size distribution MSWI BA 2-40 mm 

The material has a PSD comprising the complete concrete 
gravel range (4-32 mm). Therefore, replacement of this 
virgin aggregate is easily suggested. However, physical and 
chemical properties (e.g. fracture resistance, porosity, 
leaching, alkali silica reaction, etc.) can conflict with the 
ability to apply the BA directly into concrete, making 
additional treatment steps necessary. 
 
3.2. Material distribution 
Fig. 3 depicts the PSDs of the various materials found in the 
4-31.5 mm BA on a logarithmic scale. 
 

 
Fig. 3 PSD of sorted material fractions 

Except for the metal fraction and the glass fraction, with 
respectively comparatively few small and large particles, all 
materials show a similar PSD. Additionally, the extractable 
mineral fraction relates to a very large extent with the 
average PSD of the entire material (Fig. 2). 
When every size fraction of the BA is considered 
individually, the distribution of the materials throughout the 
various fractions can be determined (Fig. 4).  
 

 
Fig. 4 Material distribution in MSWI BA fractions > 4 mm 

In addition to the PSDs, this graph shows how the content of 
materials change throughout the size fractions. With 
increasing particle size, the increasing metal, and decreasing 
glass content can be perceived. Additionally, an overall 
increasing ceramic and stone content can be observed, while 
the mineral content decreases until a large increase in the 
largest fraction is perceived. On average, 70% by mass of 
the dry mineral fraction contains enough ferrous metals to 
be extractable by use of a strong magnet. This accounts for 
32.5% by mass of the total material.  
 
In this study, the material is pre-dried. Due to the high 
porosity of this material, the particle weight is greatly 
increased when the material is moist or wet. In the case of a 
high moisture content, the increased particle mass combined 
with a constant magnetic force can potentially reduce the 
extraction ratio. Additionally, in a full scale treatment setup, 
the particles will have a momentum while moving across the 
magnetic separation device (e.g. a rotating drum magnet). 
Therefore, with an equal magnetic force, a decreased 
amount of particles is expected to be extracted. Drying the 
material is costly and reduces the throughput of material. In 
order to overcome this in practice while achieving a similar 
extraction ratio, the magnetic force could be increased. 
 
3.3. Porosity 
Fig. 5 depicts both the absolute volume (calculated using 
specific density) of the non-organic, non-metallic materials 
and their porosity. Due to the fact that the specific densities 
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of these materials are relatively close to each other, the 
material distribution based on volume is closely related to 
the material distribution based on mass.  
 

 

Fig. 5 Material volume and porosity 

Together, extractable minerals and ceramics and stones 
account for the majority of the porosity (5.8% and 5.3% 
respectively). The remaining non-extractable minerals and 
glass fraction show a porosity of 3.1% and 0.9%, 
respectively. 
 
In contrast to prior expectations, the glass fraction has been 
found to show a porosity. This can be explained by the fact 
that the BA glass fraction is not purely glass. A number of 
glass particles show a mineral slag layer on their surface. 
Additionally, particles can be scratched or etched creating 
an increased surface area able to retain water. Furthermore, 
with an increase in particle size, the surface to volume ratio 
decreases. Because of this, the influence of this layer is 
reduced. 
 
Since the extractable mineral fraction has the highest 
porosity of all materials, magnetic separation has the 
potential to decrease the overall porosity of the BA and to 
provide a cleaner mineral stream of glass or ceramics and 
stones. This can potentially increase the applicability for 
both material streams generated.  
 
4. CONCLUSIONS 

Based on the data presented, the following can be 
concluded: 

• The PSD of the BA lies predominantly in the 
gravel size range An application of coarse 
aggregates replacement is hereby possible when 
taking legislation into account; 

• 70% of the mineral fraction is extractable by 
magnet, accounting for 32.5% of the overall 
material; 

• Extractable minerals and ceramics and stones 
account for the majority of the porosity (5.8% and 
5.3% respectively); 

• Magnetic separation has the potential to provide a 
cleaner mineral stream of glass, ceramics and 
stones; 

• Through magnetic separation, the overall porosity 
of the remaining BA is reduced. 

 
Additional studies determining both the chemical and 
mineralogical composition of all fractions involved are 
required in order to establish a correlation between physical 
properties of individual size fractions and their 
mineralogical composition related to their density and PSD. 
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