

CYPRUS 2016 4th International Conference on Sustainable Solid Waste Management

23nd - 25th June 2016 Limassol, Cyprus

Valorisation of Woody Biomass Bottom Ash in Portland Cement: A Characterization and Hydration Study

V. Sklivaniti¹, P.E. Tsakiridis², N.S. Katsiotis¹, D. Velissariou¹, N. Pistofidis^{3,} D. *Papageorgiou*³ M. Beazi¹

¹ Laboratory of Inorganic & Analytical Chemistry, School of Chemical Engineering, N.T.U.A.
 ² Laboratory of Physical Metallurgy, School of Mining and Metallurgical Engineering, N.T.U.A.
 ³ Titan Cement Company SA, Group R&D and Quality Department, Athens, Greece

Contents

• Introduction

- Environmental Issues
- Bottom/Fly Ash Production
- Valorization of Ash
- Portland cement
- Materials & Methods
- Results
 - Woody Bottom Ash Characterization
 - Blended Cement Hydration
- Conclusions

Environmental Concerns

• Research for Alternative renewable energy resources/

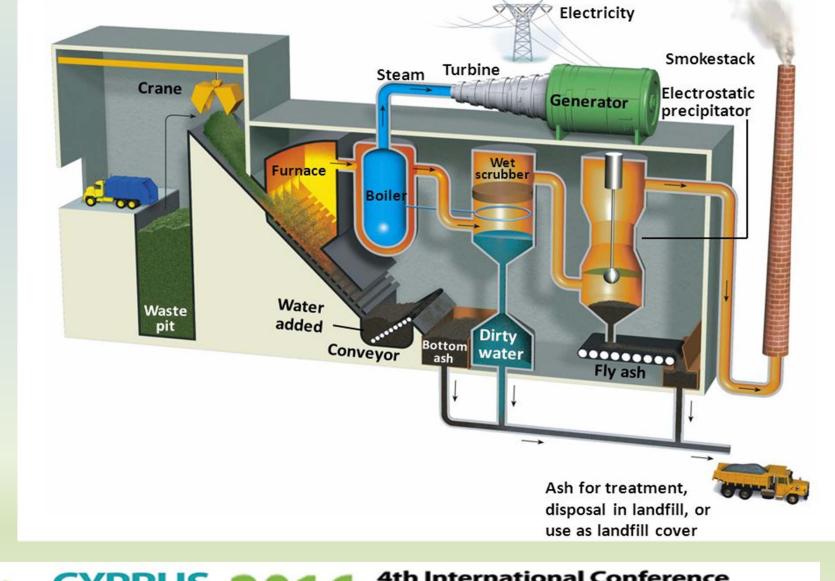
Alternative Raw Materials

- Benefit of the economical cost
- Reduction of the environmental impact
- Energy Substitutes could lead to a relative increase of wasted produced, during the incineration process
 - Bottom ash
 - Fly ash

Bottom/Fly Ash Production

Bottom ash

- produced in the boiler first combustion chamber
- main part of the ash generated,
- mixed with other impurities


Fly ash

- collected primarily in cyclones, which are located behind the combustion unit
- and in electrostatic and/or bag filters
- may be rich in heavy metal contaminants

Waste to Energy Incinarator

CYPRUS 2016 4th International Conference 23 - 25 June 2016 Limassol, Cyprus

Valorization of Ash

- From biomass for energy production
- Material chemical constituents can vary considerably but all ashes include:
 - Silicon Dioxide (SiO2)
 - $\circ~$ Calcium Oxide (CaO) also known as Lime
 - Iron (III) Oxide (FeO2)
 - Aluminum Oxide (Al2O3)
- Environmental regulations in Europe obligate to the choice of recycling and reuse
- Disposal cost is very high at controlled landfills
- Utilization Pathways as
 - $\circ~$ raw material in ceramic industry
 - o filler material in road bases construction
 - o neutralize agent for wastes with high acidity,
 - glazing Material
 - o filler material in concrete
 - o substitute in cement, mainly because of its high alkali content

4th International Conference on Sustainable Solid Waste Management

Portland cement

"Cement is a crystalline compound of calcium silicates and other calcium compounds having hydraulic properties"

- Hydraulic ability: to set and harden under or with excess water through the hydration of the cement's chemical compounds or minerals
- There are two Reaction Mechanisms:
 - Activation with the addition of water (Hydration Reaction)
 - Development of hydraulic properties when the interact with hydrated lime Ca(OH)₂ (Pozzolanic Reaction)

•Waste derived or by-product materials can be utilised from cement industries in multiple ways:

 $\odot to$ replace primary raw materials used in the cement clinker recipe ${\mbox{\cdot}}$

 $\odot to substitute conventional fuels such as coal, coke, and gas.$

 to be utilised as additives in the production process of constituent cements to meet the requirements of EN 197-1

Materials & Methods

CYPRUS 201

•The cement used in all mixtures was a CEM I 52.5 Ordinary Portland Cement (OPC)

•The bottom ash had been generated after the combustion of olive plants trimmings in wood-fired boilers

Code	CEM I 52.5N (wt%)	WBA (wt%)	Specific Surface Area (cm²/g)	Specific Gravity (g/cm ³)	
C _{Ref}	100	0	3870	3.14	
C ₂	98	2	3870	3.13 3.12 3.10	
C ₃	97	3	3870		
C ₅	95	5	3875		
C ₇	93	7	3875	3.08	
C ₁₀	90	10	3880	3.06	

Table 1.Composition and characteristics of cement mixtures

Materials & Methods

- Particle size distribution
- Chemical analysis
 - X-ray Fluorescence & Atomic Absorption Spectrophotometry
- Crystalline phases of both WBA and CEM I 52.5
 - XRD analysis
- Semi-quantitative phases analysis
 - Rietveld Algorithm

• The morphology of WBA

- Scanning Electron Microscopy (SEM) & Transmission electron microscopy
- Hydration Study

• XRD analysis & TG/DTA

Results-Woody Bottom Ash Characterization-WBA particle size distribution & Particle size distribution mean values specific surface area results

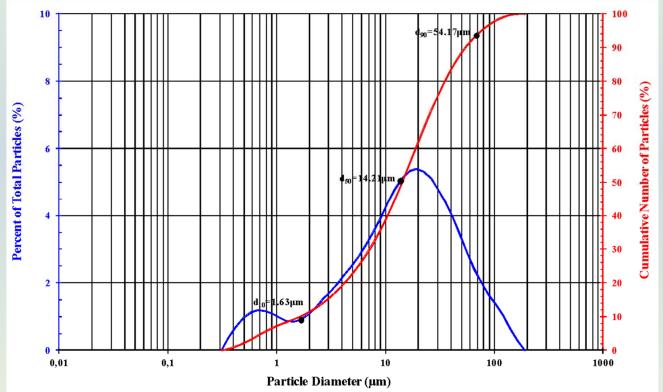
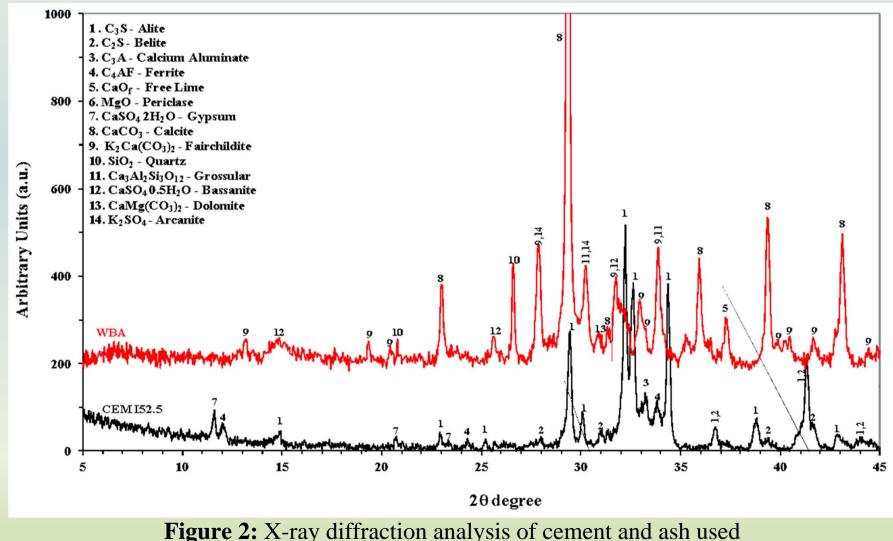


Figure 1: WBA particle size distribution (Cumulative Passing and Particle Distribution)

Table 2 Particle size distribution mean values

	PSD			
Sample	Mean	Median	x ₁₀	x ₉₀
	(µm)	(µm)	(µm)	(µm)
WBA	1.15	14.21	1.63	54.17

Results-Woody Bottom Ash Characterization-Chemical analysis


Table 3 Chemical analysis and physical characteristics of cement and ash used

Ovideo	Chemical Analysis (wt%)			
Oxides	CEM I 52.5N	WBA		
SiO ₂	21.25	6.84		
Al ₂ O ₃	3.77	2.73		
Fe ₂ O ₃	4.27	1.39		
CaO	64.35	31.41		
MgO	1.25	2.45		
K ₂ O	0.44	12.31		
Na ₂ O	0.12	0.11		
SO ₃	2.40	0.14		
TiO ₂	0.23			
free CaO	0.15	1.60		
CI	0.018	0.05		
LOI	1.25	41.49		
Physical Characteristics				
Specific surface (cm ²	/g) 3870	3930		
Specific gravity (g/cm	³) 3.14	2.35		

Results-Woody Bottom Ash Characterization-Chemical analysis and physical characteristics of cement and ash used

PRUS

4th International Conference on Sustainable Solid Waste Management

Results-Woody Bottom Ash Characterization-WBA phase composition by Rietveld analysis

Table 2.WBA phase composition by Rietveld analysis

Composition (wt%)		

CYPRUS 201

Woody Bottom Ash Characterization- Scanning electron micrographs of WBA.

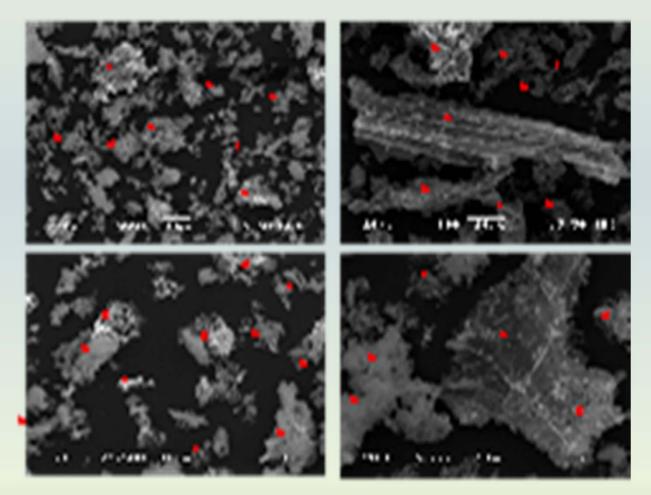


Figure 3: Scanning electron micrographs of WBA. a: CaCO₃, b: K₂CaCO₃, c: SiO₂, d: Ca₃Al₂Si₃O₁₂

e:K₂SO₄, f: CaSO₄ 0.5H₂O, g:CaO

Results-Woody Bottom Ash Characterization-Transmission electron microscopy

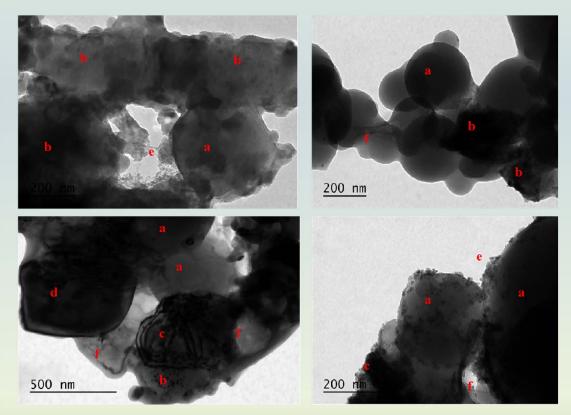


Figure 4: Transmission electron microscopy of WBA . a: CaCO₃, b: K₂CaCO₃, c: SiO₂,

d: $a_3Al_2Si_3O_{12}$ e: K_2SO_4 , f: CaO

CYPRUS 201

5 4th International Conference on Sustainable Solid Waste Management

Results-Blended Cements

Table 4. Physical properties of blended cements

Sample	WBA (wt%)	Water Demand (wt%)	Setting Times (min) Initial Final		Le Chatelier Expansion (mm)
C _{Ref}	-	26.60	120	165	0.5
C ₂	2	27.40	175	250	0.6
C ₃	3	28.20	70	225	0.7
C ₅	5	29.20	50	170	0.9
C ₇	7	31.75	<40	150	1.2
C ₁₀	10	32.40	<40	120	1.7

Results-Blended Cements - Strength development

Figure 5: Strength development of the produced blended cement with WBA

YPRUS 2 - 25 June 2

Results-Blended Cement Hydration -

7wt% WBA substitution

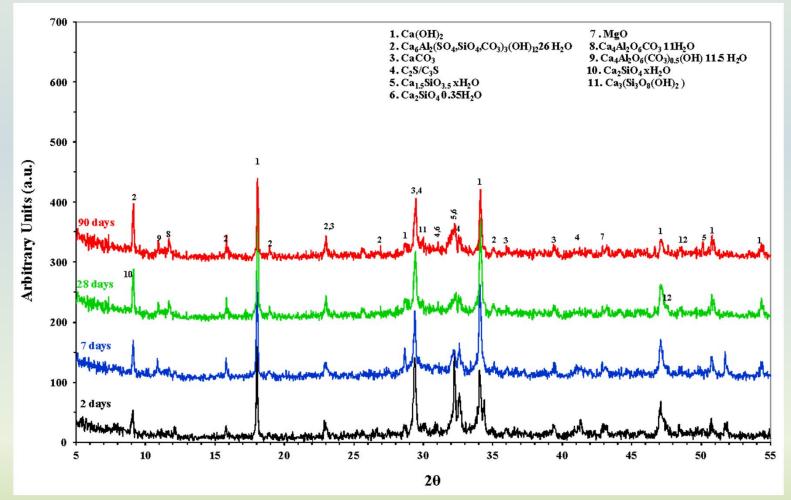


Figure 5: X-ray diffraction of C₇ blended cement with 7 wt% WBA, hydrated at various ages

PRUS 25 June

Results-Blended Cement Hydration - hydrated at 28 days

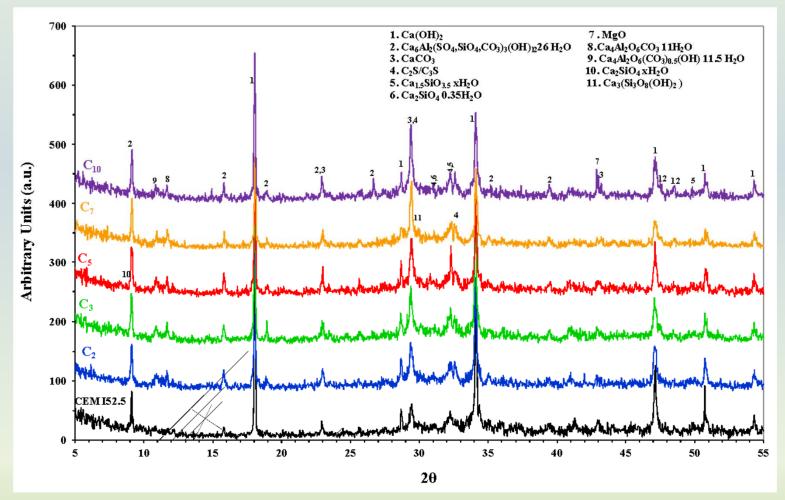


Figure 6: X-ray diffraction of reference and blended cements, hydrated at 28 days

PRUS

Results-Blended Cement Hydration -

hydrated at 28 days

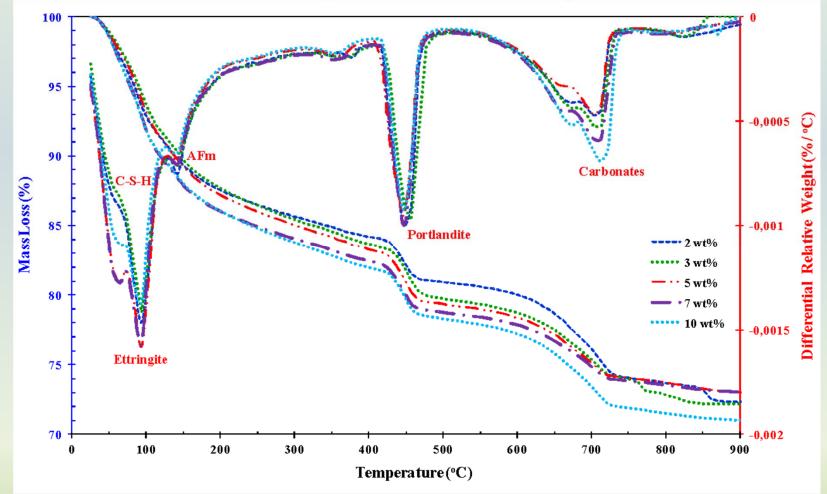


Figure 7: TG/DTG of blended cements, hydrated at 28 days

Conclusions

-- Woody bottom ash (WBA) is:

-combustion by-product of olive plants trimmings in wood-fired boilers, is -carbonate fine grained material, consisting mainly of calcite (CaCO₃) and secondarily of fairchildite (K₂CaCO₃)

--Substituting Portland cement can be used as a filler material, -shorter setting times

- -higher water demand
- -hydration rate acceleration.
- -relatively lower compressive strengths at all ages

--Up to 7 wt% substitution can be satisfied the requirements for strength class 42.5 as per EN 197-1

