

NTUA

Isolation of b-glucans from selected Basidiomycetes strains grown in olive oil mill wastewater

A. Zerva¹, L.-M. Papaspyridi¹, G. Mousavi¹, P. Christakopoulos² and E. Topakas¹

¹Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, Athens 15780, Greece ²Biochemical and Chemical Process Engineering, Division of Sustainable Process

Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden

> 4th International Conference on Sustainable Solid Waste Management, Limassol, 23–25 June 2016

Olive oil mill wastewater

- Dark liquid with strong odor
- High organic load
- High concentration of (poly)phenols
- High phytotoxicity
- Toxicity against soil microorganisms
- Deposition in landfills and evaporation

Environmental and aesthetic degradation of the deposition area

OMWW properties	
рН	5.00 <u>+</u> 0.07
Proteins (g L⁻¹)	0.90 <u>+</u> 0.19
Total N (g L ⁻¹)	5.00 <u>+</u> 0.07
Total phenolics (g L ⁻¹)	3.88 <u>+</u> 0.92
Total solids (g L ⁻¹)	43.67 <u>+</u> 5.43
TOC (g L ⁻¹)	28.58 <u>+</u> 3.00

Ntougias, S., et al. (2013).

Basidiomycetes wood-rot fungi

- Potent degraders of lignocellulose
- Degradation of OMWW

Oxidation of (poly)phenols

Decrease of toxicity, colour

• Production of a variety of valuable products

Enzymes

Secondary metabolites

Polysaccharides

(α , β - glucans)

AUA, Faculty of crop science, Associate Prof. G. Zervakis

Pleurotus citrinopileatus

Pleurotus ostreatus

Ganoderma lucidum

Glucans

- Polysaccharides from glucose monomers
- Different bonds among glucose units and branches result in a variety of glucans
- In fungal cell walls, glucans are usually in complex with chitin or proteins
- Basidiomycetes also produce secreted glucans
- α- D- glucans are linear polymers
- β- D- glucans usually branched chains

Aim of the study

- Biological treatment of OMWW with the use of wood-rot fungi
- Valorization of the waste through the production of high added-value products

Biological activities of glucans

- Antitumor
- Immuno-stimulating
- Anti-bacterial, antifungal, antiviral
- Lower blood cholesterol

- Decolourization
- Phenols degradation
- Polysaccharides (β-glucans)

Experimental procedure

Mushrooms grown in two different media:

- Xylose 57 g L⁻¹
- Yeast extract 30 g L⁻¹
- K₂HPO₄ 1 g L⁻¹
- MgSO₄(H₂O)7 0.2 g L⁻¹

Glucan content in crude and purified fractions was measured with the Yeast and Mushroom beta-glucan Assay kit from Megazyme [®]

Synytsya, A., Míčková, K., Synytsya, A., Jablonský, I., Spěváček, J., Erban, V., Kováříková, E., Čopíková, J.: Glucans from fruit bodies of cultivated mushrooms *Pleurotus ostreatus* and *Pleurotus eryngii*: Structure and potential prebiotic activity. Carbohydr. Polym. 76(4) 548-556 (2009).Wei, S., Helsper, J. P. F. G., Van Griensven, L. J. L. D.: Phenolic Compounds Present in Medicinal Mushroom Extracts Generate Reactive Oxygen Species in Human Cells In Vitro. Int. J. Med. Mushrooms. 10(1), 1-13 (2008).

EPS were isolated from the extracellular fluid with ethanol precipitation Biomass polysaccharides were purified following one of two protocols, A (Synytsya et al., 2009), or B (Wei et al., 2008).

P. ostreatus

Table 1: Glucan composition of the isolated fractions from the *P. ostreatus* cultures. The isolation was performed following Protocol A.

Defined medium cultures	Crude biomass (% w/w)	Water- soluble fraction (% w/w)	Purification (fold)	Yield (%)	Alkali- soluble fraction (% w/w)	Purification (fold)	Yield (%)	EPS (% w/w)
Total glucans	8.6	20.4	2.36	21.1	16.4	1.9	1.7	4.6
α- glucans	3.3	11.1	3.29	29.3	11.0	3.3	3	0.27
β- glucans	5.3	9.4	1.77	15.8	5.4	1.0	0.9	4.3
OOMW cultures								
Total glucans	7.6	34.7	4.6	28.6	n.d.	n.d.	n.d.	1.9
α- glucans	1.1	3.0	2.7	16.9	n.d.	n.d.	n.d.	0.5
β- glucans	6.5	31.7	4.9	30.9	n.d.	n.d.	n.d.	1.5

- Phenolics reduction: 43.6%
- Decolourization: 11.1%

P. citrinopileatus

(A)

(C)

Frac Pro gluo bion Wa frac a, D

Table 2: Glucan composition of the isolated fractions from the *P. citrinopileatus* cultures. The isolation was performed following both Protocols A and B.

Significant decolourization and ohenols reduction was	Defined medium cultures	Crude biomass (% w/w)	Water- soluble fraction (% w/w)	Purification (fold)	Yield (%)	Alkali- soluble fraction (% w/w)	Purification (fold)	Yield (%)	EPS (% w/w)
	Total	6.5	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	6.6
(B)	glucans								
Contraction of the second	α-	0.6	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.45
AND AT STATE	glucans								
	β-	5.9	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	6.2
	glucans								
(D)	OOMW cultures								
The second	Total	14.1 ¹	13.1 ¹	0.93 ¹ ().6 ¹	23.8 ¹ 1.	.7 ¹ 1.5	¹ n	.d.
Contraction of the second	glucans	7. 5 ²	31.7 ²	4.2 ² 1	L.8 ²				
tions obtained after	α-	3.1 ¹	6.3 ¹	2.03 ¹ 1	L.3 ¹	2.2 ¹ 0.	.7 ¹ 0.6	¹ n	.d.
cocol A purification of β- cans from <i>P. citrinopileatus</i>	glucans	1.7 ²	15.7 ²	9.4 ² 5	5.2 ²				
er-soluble fraction, B) Solid	β-	10.9 ¹	6.8 ¹	0.62 ¹ 1	L.4 ¹	21.6 ¹ 2.	.0 ¹ 1.8	¹ n	.d.
tion C) Alkali-soluble fraction) Alkali – soluble fraction b.	glucans	5.9 ²	16.0 ²	2.7 ² 1	L.5 ²				

¹ Results from purification protocol A, ²Results from purification protocol B, n.d. not detected.

G. lucidum

Table 3: Glucan composition of the isolated fractions from the *G. lucidum*cultures. The isolation was performed following Protocol B.

Phenolics reduction: 19.4%

• Decolourization: 47.5%

medium cultures	biomass (% w/w)	polysaccharides (% w/w)	(fold)	(%)	EPS (% W/W)
Total glucans	6.2	49.1	7.9	36.3	37.9
α- glucans	0.8	0.5	0.6	2.9	0.3
β- glucans	5.4	48.6	9.0	41.2	37.6
OOMW cultures					
Total glucans	5.5	14.9	2.7	14	n.d.
α- glucans	0.1	0.6	5.0	28.1	n.d.
β- glucans	5.4	14.3	2.6	14.0	n.d.

Conclusions

- Satisfactory biomass growth in OOMW, nitrogen- supplemented medium from all three strains
- Submerged fermentation is faster than solid state approaches.
- *G. lucidum* produced gel-like EPS, consisting mainly of beta-glucans.
- The two purification protocols tested did not appear to be very different in terms of yield and product recovery
- Time-consuming and costly steps of a-amylase and Sevag treatments could be omitted, without significant loss
- Protein contamination was evident in the FT-IR spectra of all samples \rightarrow proteoglycans?
- Overall, the combination of Basidiomycete OOMW treatment and concomitant production of glucans with pharmaceutical and nutritional value could lead to the valorization of the liquid waste.

NTUA IndBioCat Group

http://www.chemeng.ntua.gr/indubiocat/index.html

PhD candidates: A. Zerva, C. Katsimpouras M. Kanelli, E. Nikolaivits

Acknowledgements

This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: THALIS -UOA-MIS 377062. The authors would like to thank Associate Professor **G. Zervakis**, (Faculty of crop science, AUA) for kindly providing the strains used in this study.

Evangelos Topakas, Assistant Professor

Thank you for your attention!