Transformation of oil palm fronds into pentose sugars using copper (II) sulfate pentahydrate with the assistance of chemical additive

Loow Y.L., Wu T.Y., Jahim J.M., Mohammad A.W.
Outline of Content

1. Introduction
2. Research Aim
3. Research Methodology
4. Pentose Sugar Recovery in Hydrolysate
5. Characterization of Solid Residues
6. Communications of Results
7. References
1. Introduction
In 2010 (Yunus et al., 2010), per million ton FFB processed:

- OPT = 7 million tons, EFB = 0.23 million tons
- **OPF = 26.2 million tons!!!**

Lignocellulosic biomass

- Agricultural residues
 (corn stover, wheat straw, etc…)
- Energy crops
 (switchgrass, miscanthus straw, etc…)
- Forestry residues
 (wood chips, poplar, etc…)

![Fig. 1 Oil palm fronds (OPF), with leaflets removed](adapted from http://www.mightyjacksparrow.com)
Introduction

Dwindling fossil fuel reserves

Search for alternative energy sources

Current trend: Fermentation of biomass into more useful products

![Process block diagram of a biorefinery system, consisting of biomass pretreatment and fermentation](https://public.ornl.gov)

Fig. 2 Process block diagram of a biorefinery system, consisting of biomass pretreatment and fermentation (adapted from https://public.ornl.gov)
Introduction (Continued…)

• Biomass recalcitrance
• Difficult to be converted into fermentable sugars
• Without pretreatment → low sugar yield

Fig. 3 Lignocellulosic biomass structure
(adapted from Tomme et al., 1995)
Biomass pretreatments:

• Chemical (acid hydrolysis, alkali, ionic liquid, etc)
• Physical (grinding, milling, etc)

Constraints:

• Operate at extreme conditions (150-180°C, high pressures)
• Energy intensive
Inorganic salt pretreatment

i. **Tested:** NaCl, MgCl$_2$, CuCl$_2$, FeCl$_3$, AlCl$_3$, etc…

ii. **Comparable to acid hydrolysis:**

 Effective hydrolysis rates and sugar yields of hemicellulose

Mechanism:-

- Complex cation $[M(H_2O)_n]^{z+}$ acts as nucleophile (**Lewis acid**)
- Production of H_3O^+ ion, better effect than acid (**Bronsted acid**)

Introduction (Continued…)
Addition of oxidizing agent:

- \(\text{H}_2\text{O}_2 \): Source of \(\text{OH}\bullet \) radicals

 Non-selective oxidation process

 Proven to improve sugar hydrolysis

- Diaz et al. (2014): Addition of \(\text{H}_2\text{O}_2 \) \(\Rightarrow \) sugar recovery \(\uparrow \) 75%

- Kato et al. (2014): \(\text{H}_2\text{O}_2 \) + \(\text{Fe}^{2+} \) \(\Rightarrow \) enzymatic hydrolysis \(\uparrow \)
Oxidizing agent-assisted pretreatment

Addition of oxidizing agent:

• $\text{Na}_2\text{S}_2\text{O}_8$: Source of SO_4^{\cdot} radicals

 Stronger oxidants than OH^{\cdot}

 Degrade organic compounds

• Never tested in biomass pretreatment
2. Research Aims
Research Aims

To develop a novel pretreatment system using inorganic salt and oxidizing agent, and to evaluate its efficiency on pentose sugar recovery under less severe conditions.
Oxidizing agent-assisted pretreatment

Theory: Oxidative delignification of aromatic ring in lignin

Fig. 4 Chemical structure of lignin (adapted from http://www.lignoworks.ca)
3. Research Methodology

Stage A: Inorganic salt pretreatment

Stage B: Oxidizing agent-assisted pretreatment
Methodology

Stage 1
OPF + Salt solution = Mixture solution
S:L ratio = 1:10
CuSO₄·5H₂O (0.2M-0.8M)

Stage 2
Mixture solution + H₂O₂ / Na₂S₂O₈
(1.5 - 6 % v/v)

Reaction at 120°C for 30min

(1) HPLC analysis for sugars
(2) Mechanism
(3) Characterization studies
(Fe-SEM, FTIR, BET, etc....)
4. Pentose Sugar Recovery in Hydrolysate

Stage A: Inorganic salt pretreatment

Stage B: Oxidizing agent-assisted pretreatment
(1) HPLC analysis of liquid fraction
Effect of inorganic salt concentration

Fig. 5 Sugar recovery from OPF using CuSO₄⋅5H₂O. Different letters signify different significance levels

Xylose yield of 0.8 g/L at 4.1%.
Arabinose yield of 1.0 g/L at 35.2%.
Observations

- No significant changes with increase from 0.2M – 0.8M of CuSO$_4$.5H$_2$O
- Inverse relationship between hydration levels and solvating ability (Awosusi et al., 2015)
- Saturation of water molecules around cation (Leipner et al., 2000)
- Divalent salt not as effective as trivalent (Sun et al., 2011)
Effect of H$_2$O$_2$ concentration

![Bar chart showing sugar recovery from OPF using CuSO$_4$.5H$_2$O assisted with H$_2$O$_2$. Different letters signify different significance levels.](chart.png)

Fig. 6 Sugar recovery from OPF using CuSO$_4$.5H$_2$O assisted with H$_2$O$_2$. Different letters signify different significance levels.

Xylose yield of 1.3 g/L at 6.6%.

Arabinose yield of 1.1 g/L at 39.1%.
Observations

• At 1.5% (v/v) H₂O₂, pentose sugars increased slightly

• Source of hydroxyl (OH•) radicals in presence of copper ions (Peng et al., 2012)

• Excessive amounts of H₂O₂ caused secondary reactions (Zazo et al., 2005)
Effect of Na$_2$S$_2$O$_8$ concentration

Fig. 7 Sugar recovery from OPF using CuSO$_4$·5H$_2$O assisted with Na$_2$S$_2$O$_8$. Different letters signify different significance levels.

Xylose yield of 8.2 g/L at 41.0%.

Arabinose yield of 0.9 g/L at 33.1%.
Observations

• At 4.5% (v/v) Na$_2$S$_2$O$_8$, pentose sugars increased significantly

• Source of sulfate (SO$_4$•) radicals (Zhang et al., 2015)

• Excessive Na$_2$S$_2$O$_8$ caused unwanted reactions that compete to consume SO$_4$• (Rastogi et al., 2009)
(2) Proposed mechanism
Mechanism of H$_2$O$_2$/ Na$_2$S$_2$O$_8$ action on inorganic salt

1) Cu$^{2+}$ + H$_2$O$_2$ → Cu$^+$ + HO$_2$• + H$^+$
 Cu$^+$ + H$_2$O$_2$ → Cu$^{2+}$ + OH• + OH$^-$ (Simpson et al., 1988)

2) Cu$^{2+}$ + S$_2$O$_8^{2-}$ → Cu$^{3+}$ + SO$_4$•$^-$ + SO$_4^{2-}$ (Liu et al., 2012)
Fig. 8 Schematic illustration of the lignocellulosic components in biomass
Proposed Mechanism

Fig. 9 Proposed mechanism for the synergistic action of hydroxyl/sulfate radicals and inorganic salt during pretreatment of OPF

0.2 mol/L of CuSO$_4$·5H$_2$O $+$ 4.5% (v/v) Na$_2$S$_2$O$_8$

$T = 120^\circ$C, $t = 30$ min

Raw OPF \rightarrow Pretreated OPF

Non-structural sugars
5. Characterization of Solid Residues

Stage A: Inorganic salt pretreatment

Stage B: Oxidizing agent-assisted pretreatment
(3) Characterization of solid fraction
5 Characterization of Solid Residues (Continued…)

FE-SEM

Fig. 10 FE-SEM images of raw and pretreated OPF at x300 magnification

- **Raw OPF**
- **CuSO₄·5H₂O** only
- **CuSO₄·5H₂O + H₂O₂**
- **CuSO₄·5H₂O + Na₂S₂O₈**

Lignin

Hemicellulose

Cellulose
BET

Specific surface area:

• Raw OPF (before pretreatment) = 0.3752 m\(^2\)/g

• 0.2M CuSO\(_4\)·5H\(_2\)O only = 0.4587 m\(^2\)/g

• 0.2M CuSO\(_4\)·5H\(_2\)O + 1.5% H\(_2\)O\(_2\) = 0.4872 m\(^2\)/g

• 0.2M CuSO\(_4\)·5H\(_2\)O + 4.5% Na\(_2\)S\(_2\)O\(_8\) = 0.6952 m\(^2\)/g

Oxidizing agent caused more severe breakage → higher surface area
Characterization of Solid Residues (Continued…)

FTIR

Fig. 11 FTIR spectra of raw and pretreated OPF
Table 1 Performance of various pretreatment systems utilizing OPF

<table>
<thead>
<tr>
<th>Feedstock</th>
<th>Pretreatment conditions</th>
<th>Sugar recovery</th>
<th>Ref.</th>
</tr>
</thead>
</table>
| 841 µm OPF particles | 1) Soaked in 2.0 mol/L of NaOH at room temperature for 24h
2) Acid hydrolysis with 10.0% (v/v) H₂SO₄ for 121°C and 30 min | 1) Maximum reducing sugar concentration of 0.0811 g/L | Sabihahanim et al. (2012) |
| <1 mm OPF particles | 1) Auto-hydrolysis for 121°C and 1h
2) Enzymatic hydrolysis using 16 U xylanase for 48h | 1) Maximum xylose concentration of 0.795 g/L | Siti Sabrina et al. (2013) |
| 0.5 mm OPF particles | 1) Auto-hydrolysis for 121°C and 60 min
2) Enzymatic hydrolysis using 4 U Trichoderma viride endo-(1, 4)-β-xylanase/100mg hydrolysate, at 40°C and 48h | 1) Arabinose and xylose yields of 19.24% (w/w) and 25.64% (w/w), respectively | Sabihahanim et al. (2011) |
| <1 mm OPF particles | 1) Hot compressed water for 175°C and 12.5 min | 1) Highest concentration of 0.4434 g/L xylose and 0.0633 g/L glucose | Goh et al. (2010) |
| 125-706 µm OPF particles | 1) Soaked in 7% (w/w) aqueous ammonia for 80°C and 20h
2) Simultaneous saccharification and fermentation using 60 FPU Accellerase 1000/g glucan and 30 CBU β-glucosidase/g glucan, at 38°C and 48h | 1) Xylose concentration of 7.6 g/L (62.4% recovery) | Jung et al. (2012) |
| ≤0.5mm OPF particles | 1) 0.2 mol/L of CuSO₄·5H₂O + 4.5% (v/v) Na₂S₂O₅ reaction at 120°C and 30mins | 1) Xylose concentration of 8.2 g/L (41.0% recovery) and arabinose concentration of 0.9 g/L (33.1% recovery) | This study |
6. Communications of Results
Communications of Results

Conference Proceedings:

Submitted Publications:

- **Loow YL**, Wu TY, Yang GH, Jahim JM, Mohammad AW (2016) Role of energy irradiation as an assistive technique during the pretreatment of lignocellulosic biomass for improving reducing sugars recovery. *Cellulose* (Accepted with conditions). Impact factor: 3.573 (Q1)

7. References
References

Acknowledgement

- The funding of this research is supported by the Ministry of Higher Education, Malaysia, under Long Term Research Grant Scheme (LRGS/2013/UKM-UKM/PT/01).

- CYPRUS 2016 4th International Conference on Sustainable Solid Waste Management
Thank You