POMIS Project: experience and good practice of home-composting in the Region of Eastern Macedonia and Thrace (REMTH), Greece

M. Maladaki, D. Mallini, M. Minoglou, A. Petalas, C. Poultsidis, A. Sanitsas, F. Tsagas and G. Vogiatzis

CYPRUS 2016 4th International Conference on Sustainable Solid Waste Management, 23rd–25th June 2016, Limassol, Cyprus
Overview

- Introduction – home composting & POMIS Project
- Objective
- Methods
 1. Distribution of bins & awareness & information events
 2. Monitoring
 3. Laboratory analysis
- Results
- Conclusions
Introduction

- Waste management hierarchy: avoidance, minimization, source reduction of waste and Municipal Solid Waste (MSW)

- High organic fraction 35% - 50% (w/w) of MSW in many countries

- Composting: decomposition of organic material by aerobic microorganisms resulting in compost - a product rich in organic material
Home composting (1/2)

- Home composting of source-separated organic household waste (OHW) like kitchen waste, fruit and vegetables leftovers, etc.
- A wide practice of home composting may have as a result a significant amount of OHW to avoid the costly management of MSW via collect, transfer, treatment and landfill of residue.
- Life Cycle Analysis (LCA) studies show low environmental impacts.
Home composting (2/2)

- Studies verify positive feedback from households as users of the home composters in their daily activities.
- Final compost product is usually of a high quality used as gardening soil while difficulties are easily managed.
- Minor requirements: a composting bin, some green-waste as bulking material, free space usually in a garden or backyard, aeration, moisture, user attention.
Home composting in Greece

- Previous experience: mostly municipalities and small number of bins without monitoring
- First time in a Region of ~608,000 inh.: 1,900 home composting bins, systematic monitoring and laboratory analysis of compost

<table>
<thead>
<tr>
<th>Region/Municipality</th>
<th>Number of bins</th>
<th>Year or period of project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region of Eastern Macedonia – Thrace</td>
<td>500</td>
<td>2009</td>
</tr>
<tr>
<td>Municipality of Trikala</td>
<td>39</td>
<td>2011</td>
</tr>
<tr>
<td>Municipality of Alexandria</td>
<td>250</td>
<td>2010</td>
</tr>
<tr>
<td>Municipality of Pavlos Melas</td>
<td>108</td>
<td>2011</td>
</tr>
<tr>
<td>Heraklion/Crete ESDAK</td>
<td>170</td>
<td>2011-2014</td>
</tr>
<tr>
<td>POMIS project – Region of Eastern Macedonia - Thrace</td>
<td>1,900</td>
<td>2013-2015</td>
</tr>
</tbody>
</table>
POMIS Project
ETC Greece-Bulgaria 2007–2013

- Project of “European Territorial Cooperation Programme Greece-Bulgaria 2007–2013” (MIS Code 900101) to optimize the operation of the MSW management system in Regions of Greece & Bulgaria

- Project partners: LP: DIAAMATH SA from Greece, P2 Regional Association “For Cleaner Rhodopi” and P3 Municipality of Kardzhali from Bulgaria

- Budget: 1.057.329,95 €, ERDF 85% - NC 15%

- Duration: 1/10/2013 – 30/09/2015

- Info: http://www.pomis.eu
Objective

- Presentation of POMIS project with emphasis to its contribution on enhancing the practice of home-composting through a pilot action of monitoring a Region wide network of 1.900 home composting bins.

- Main aim:
 - optimizing the operation of the MSW management system in the Region of Eastern Macedonia – Thrace (REMTH) in Greece and in the Region of Kardzhali in Bulgaria
 - emphasis on home composting, material recycling like packaging waste and edible oils recycling.
 - disseminating information & invaluable experience!
Pilot action & location

- Monitoring 1,900 bins
- Region of Eastern Macedonia & Thrace in Northern Greece - REMTH
- REMTH ~608,000 inh.
Methods

Three main stages:

1. Distribution of home-composting bins and information and awareness events
2. Monitoring of home-composting bins
3. Laboratory analysis
Methods

1. Distribution of bins

- Polypropylene resistant in UV, 72x72cm, height 80cm, Vol. 330 l
- Distribution of 1,900 bins and guidelines in interested citizens.
- Collaboration with municipalities on information & awareness events
Methods

1. Distribution of bins

- Organization of information and awareness events across the whole Region of EMTH including the two islands of Thassos and Samothrace!
Methods

1. Awareness & information events

- Type of event: Target audience
 - Municipalities: people, citizens
 - Primary schools: students, teachers
 - Workshops: engineers, civil servants
Methods

2. Monitoring of home composting

- Continuous monitoring and support of households by expert scientists & engineers
 - on-site visits in households & telephone contacts
 - personal interviews by preparing & completing questionnaires

1. Preparation
2. Site visit (interview, advising, completing questionnaire, pictures)
3. After visit (registration of data, editing database, statistical results)
Methods

2. Monitoring - Questionnaire

- **Part 1: General Owner Information**
 - Name, Address, House/manor, number of members, age of members, education level

- **Part 2: Consistency of User and incoming waste**
 - 1. Frequency of use, 2. Status of bin, 3. Type of waste, 4. Size of waste

- **Part 3: Quality characteristics of bin content**

- **Part 4: Quality characteristics of produced compost**
 - 1. Homogeneity, 2. Colour of compost, 3. Odour of compost
QUESTIONNAIRE OF HOME COMPOSTING BINS MONITORING

DATE: ..
BIN NUMBER:

PART 1: GENERAL OWNER INFORMATION
1. NAME: ..
2. SURNAME:
3. ADDRESS:
4. HOUSE/MANOR:
5. NUMBER OF MEMBERS:
6. AGE OF MEMBERS:
 (eg M/50, F/45, M/18, F/13 for a family with two children)
7. EDUCATION LEVEL:

PART 2: CONSISTENCY OF USER & AND INCOMING WASTE
1. FREQUENCY OF USE
 (Scale 1 to 3)
 1: Approximately twice/week
 2: Approximately once/week
 3: Seasonally with clarification
Mark with X

2. STATUS OF BIN:

3. TYPE OF BIN WASTE

<table>
<thead>
<tr>
<th>Type</th>
<th>Mark with X</th>
<th>Type</th>
<th>Mark with X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetables</td>
<td>Brunches</td>
<td>Branches</td>
<td></td>
</tr>
<tr>
<td>Bread</td>
<td>Leaves</td>
<td>Leaves</td>
<td></td>
</tr>
<tr>
<td>Fruits</td>
<td>Grass</td>
<td>Grass</td>
<td></td>
</tr>
<tr>
<td>Coffee</td>
<td>Earth</td>
<td>Earth</td>
<td></td>
</tr>
<tr>
<td>Eggs</td>
<td>Manure</td>
<td>Manure</td>
<td></td>
</tr>
<tr>
<td>Oils</td>
<td>Paper-boxes</td>
<td>Paper-boxes</td>
<td></td>
</tr>
<tr>
<td>Meat</td>
<td>Other (describe)</td>
<td>Other (describe)</td>
<td></td>
</tr>
</tbody>
</table>

4. SIZE OF BIN WASTE

(Scale 1 to 3)
1: Small/appropriate
2: Medium/not the best
3: Large/inappropriate
Mark with X

PART 3: QUALITY CHARACTERISTICS OF BIN CONTENT
1. PROPORTION OF INGREDIENTS
 (Scale 1 to 4)
 1: Satisfactory
 2: Many green
 3: Many brown
 4: Existence of several inappropriate
Mark with X

2. TEMPERATURE
 (Scale 1 to 2)
 1: Satisfactory
 2: Cold-inactive
 Thermometer indication (°C)
Mark with X

3. VOLUME
 (Scale 1 to 3)
 1: >1/2 of bin-satisfactory
 2: ~1/2 of bin-medium
 3: <1/2 of bin-small
Mark with X
Methods

2. Monitoring of home-composting bins
Methods

3. Laboratory analysis

- Evaluation of action by sampling and laboratory quality analysis of produced compost samples.
- 100 samples in 4 sampling excursions from the 5 Regional Units of REMTH: Drama, Kavala, Xanthi, Rodopi and Evros.
- Realised in the laboratory of the Department of Environmental Engineering, of Democritus University of Thrace
Methods

3. Laboratory analysis

- Dry mass content (moisture)
- Organic mass content (volatile solids)
- C,N,H determination using EA & pH determination
- Microbial Respirometric Activity (MRA) using:
 - static solid phase manometric respirometers (SRI)
 - dynamic solid phase respirometers (DRI)
- Maturity status, after calculation of germination index (GI), using tomato seeds
- Measurement of total content of six heavy metals (Pb, Ni, Cr, Zn, Cu, Cd) in selected samples
Methods

3. Laboratory analysis
Results

- Monitoring of the network of 1,900 bins
- Basic rules by the operator and the production of mature compost is guaranteed.
 - 1. caution on input materials (only bio-waste and no others like plastic, meat or dairy)
 - 2. small size of input materials
 - 3. periodic stirring
 - 4. regulating the humidity
- Great importance on the behaviour of operator.
Results

3 visits to a home composting bin

(a) 23/03/2015

(b) 21/07/2015

(c) 27/08/2015
Results

Problems occurred

- Disasters of home composting bins by strong winds, fire, stealing or human factor.
- Difficult weather conditions delayed composting process.
- Communication problems with some of the owners of home composting bins.
- Problems only in a small fraction of whole population, not affecting the “Big picture”
Results

- Benefits and statistical results from questionnaires

- Significant benefits:
 - reduction of volume of MSW ending up in landfills
 - avoidance of air pollution & resource depletion
 - avoided CO$_2$ emissions
 - reduced trucks routes
Results

Type of waste as input in bins

- Various types of OHW were used as input
- Most common waste were fruits, vegetables and leaves with progressing verification in each consecutive visit.
Results

Humidity inside the bins

- Progress in satisfactory humidity level through visits
- This was a result of the thorough communication of the expert scientists and engineers providing guidelines to bins’ users

<table>
<thead>
<tr>
<th>Visit</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satisfactory humidity</td>
<td>~54%</td>
<td>~56%</td>
<td>~81%</td>
</tr>
</tbody>
</table>
Results

Results of laboratory analysis

- Results from the laboratory analysis showed that home compost was both stable and mature in almost all cases.
- The heavy metal concentrations were far below the regulated limits.
- Compost can result after at least 3 months of treatment period inside the home-composting bin.
Conclusions (1/2)

- Home composting action of POMIS project was presented confirming home-composting as a best management option of OHW.
- POMIS project of ETC Programme Greece-Bulgaria 2007-2013 optimized the operation of MSW management system in Region of EMTH in Greece and in Region of Kardzhali in Bulgaria.
- For the first time 1,900 home composting bins covered a whole Region in Greece.
- Continuous monitoring & support of households through visits, interviews and information events.
Conclusions (2/2)

- Quality analysis of compost samples showed stable and mature compost without heavy metals.

- **Invaluable experience gained**: thorough communication of basic rules of home composting to the bins’ operators can have a dramatic effect on the behaviour of the home composting bins and as a consequence on the production of a mature compost.

- **Significant benefits earned**: reduction of the volume of OHW ending up in landfills, avoidance of air pollution and reduction of GHG emissions as well as minimisation of resource depletion.
Acknowledgements

- POMIS Project (MIS Code 900101) was implemented under the "European Territorial Cooperation Programme Greece - Bulgaria 2007 - 2013" 1 - Quality of life, Measure 1.1 - Protection, Management and Promotion of Environmental Resources and was funded by the European Regional Development Fund (ERDF) of the European Union by 85% and by national resources by 15%.

- Home-composting bins users and all participating households’ members across the Region of EMTH

- Department of Environmental Engineering of Democritus University of Thrace, Associate Professor Dimitrios Komilis and PhD Candidate Alexandros Evangelou.
Thank you for your attention!

More information: http://www.pomis.eu
End of slideshow, click for exit.
Part 1: General Owner Information
Name, Surname, Address, House/manor, number of members, age of members, education level

Part 2: Consistency of User and incoming waste

<table>
<thead>
<tr>
<th>1. Frequency of use (scale 1 to 3)</th>
<th>1. Approximately twice/week</th>
<th>2. Approximately once/week</th>
<th>3. Seasonally (clarification)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Status of bin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Type of waste</td>
<td>Vegetables, Bread, Fruits, Coffee, Eggs, Oils, Meat, Branches, Leaves, Grass, Soil, Manure, Paper-boxes, other (describe)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Size of waste (scale 1 to 3)</td>
<td>1. Small/appropriate</td>
<td>2. Medium not the best</td>
<td>3. Large/inappropriate</td>
</tr>
</tbody>
</table>

Part 3: Quality characteristics of bin content

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Temperature (scale 1 to 2)</td>
<td>1. Satisfactory</td>
<td>2. Cold-inactive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Volume (scale 1 to 3)</td>
<td>1. >50% of bin’s volume – Satisfactory</td>
<td>2. ~50% of bin’s volume – medium</td>
<td>3. <50% of bin’s – small</td>
<td></td>
</tr>
<tr>
<td>5. Colour of content (scale 1 to 3)</td>
<td>1. Light brown</td>
<td>2. Dark brown</td>
<td>3. Black</td>
<td></td>
</tr>
<tr>
<td>6. Odor of bin (scale 1 to 3)</td>
<td>1. Does not exist</td>
<td>2. Exist but does not disturb</td>
<td>3. Intense, disturbing</td>
<td></td>
</tr>
</tbody>
</table>

Part 4: Quality characteristics of produced compost

<table>
<thead>
<tr>
<th>1. Homogeneity (scale 1 to 3)</th>
<th>1. Satisfactory</th>
<th>2. Medium – There are large pieces</th>
<th>3. Inhomogeneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Colour of compost (scale 1 to 3)</td>
<td>1. Light brown</td>
<td>2. Dark brown</td>
<td>3. Black</td>
</tr>
<tr>
<td>3. Odour of compost</td>
<td>1. Does not exist</td>
<td>2. Exist but does not disturb</td>
<td>3. Intense, disturbing</td>
</tr>
</tbody>
</table>