Bioprocess development for the production of succinic acid from orange peel waste

Maria Patsalou1, Chrysanthi Pateraki2, Marlen Vasquez1, Chryssoula Drouza3 and Michalis Koutinas1

1Department of Environmental Science & Technology, Cyprus University of Technology
2Department of Food Science and Human Nutrition, Agricultural University of Athens
3Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology

Limassol, 2016
Citrus fruits

- 88×10^6 tn worldwide production
- Industrial OPW generation: 15×10^6 tn/ y
- Oranges: 82 % of the total production
- 50% of fruit is peel waste
- Animal feed
- Disposal in landfills
Orange peel waste

- Peels
- Seeds
- Segment membranes

Composition of peel*

<table>
<thead>
<tr>
<th>Components</th>
<th>% Dry mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soluble sugar</td>
<td>16.90</td>
</tr>
<tr>
<td>Starch</td>
<td>3.75</td>
</tr>
<tr>
<td>Cellulose</td>
<td>9.21</td>
</tr>
<tr>
<td>Hemicellulose</td>
<td>10.50</td>
</tr>
<tr>
<td>Lignin</td>
<td>0.84</td>
</tr>
<tr>
<td>Pectin</td>
<td>42.50</td>
</tr>
<tr>
<td>Ash</td>
<td>3.50</td>
</tr>
<tr>
<td>Fat</td>
<td>1.95</td>
</tr>
<tr>
<td>Protein</td>
<td>6.50</td>
</tr>
<tr>
<td>Others</td>
<td>4.35</td>
</tr>
</tbody>
</table>

Succinic acid

- Di-carboxylic acid

- Important biobased platform chemicals
 - Polybutylene succinate (PBS)
 - Polybutylene succinate-terephthalate (PBST)
 - Polyester polyols
 - Food industry
 - Pharmaceutical industry
 - Production of resins, coatings and pigments

- Chemical technologies
 - Catalytic hydrogenation
 - Paraffin oxidation
 - Electrolytic reduction of maleic acid or anhydride

- High theoretical yield
- Environmental friendly impact
Succinic acid producers

- *Mannheimia succiniciproducens*
- *Anaerobiospirillum succiniciproducens*
- *Basfia succiniciproducens*

- **Actinobacillus succinogenes**
 - Isolated from bovine rumen
 - Capnophilic
 - Mesophilic
 - CO₂
Proposed Flow Diagram

Orange peel waste → Extraction of essential oils → Dryer

Acid hydrolysis → solid

Extraction of pectin → liquid

Enzymes (T. reesei) → Enzyme hydrolysis

Anaerobic digestion → Fermentation of hydrolysate
Aim and Objectives

1. Preliminary study for the development of an OPW bio-refinery to produce succinic acid
 - Release of metal ions after acid hydrolysis and acid/enzyme hydrolysis
 - Dilute-acid hydrolysis conditions
 - SA Fermentations, simple sugars
 - Selection of conditions
 - Presence of HMF in hydrolysates
 - SA Fermentations, dilute-acid hydrolysates
 - Optimal cultivation time for cellulolytic enzyme production by *T. reesei*

2. Selection of conditions
 - Presence of HMF in hydrolysates
 - SA Fermentations, dilute-acid hydrolysates

3. Optimal cultivation time for cellulolytic enzyme production by *T. reesei*
Elemental analysis (ICP-MS) of Hydrolysates

Acid hydrolysis

![Graph showing elemental analysis for Acid hydrolysis](image)

Acid and enzyme hydrolysis

![Graph showing elemental analysis for Acid and enzyme hydrolysis](image)
Succinic acid production from simple sugars fermentation

Glucose

- Temperature: 37°C
- pH: 7.5
- Initial sugar: 10 gL⁻¹
- Initial MgCO₃: 30 gL⁻¹
- Yeast: 5 gL⁻¹
- CO₂: 0.5 vvm

Fructose

- Temperature: 37°C
- pH: 7.5
- Initial sugar: 10 gL⁻¹
- Initial MgCO₃: 30 gL⁻¹
- Yeast: 5 gL⁻¹
- CO₂: 0.5 vvm
Consumption of each simple sugar, Yields of fermentations

<table>
<thead>
<tr>
<th>Sugar</th>
<th>SA Yield (g_p/g_s)</th>
<th>OA Yield (g_p/g_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose</td>
<td>0.57</td>
<td>1.26</td>
</tr>
<tr>
<td>Fructose</td>
<td>0.33</td>
<td>1.10</td>
</tr>
<tr>
<td>Galactose</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glucose (Bioreactor)</td>
<td>0.66</td>
<td>1.10</td>
</tr>
</tbody>
</table>
Dilute-acid hydrolysis conditions

- 100-120 °C, fructose*
- >120 °C, arabinose and galactose*

- 116°C, 10min, 5%
- 116°C, 20min, 5%
- 109°C, 10min, 5%
- 109°C, 20min, 5%
- 116°C, 10min, 10%
- 116°C, 20min, 10%
- 109°C, 10min, 10%
- 109°C, 20min, 10%

Release of sugar of dilute-acid hydrolysis

NMR analysis

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
<th>Concentration</th>
<th>Y (gts/grm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>109 °C</td>
<td>20 min</td>
<td>10%</td>
<td>0.12</td>
</tr>
<tr>
<td>109 °C</td>
<td>10 min</td>
<td>10%</td>
<td>0.12</td>
</tr>
<tr>
<td>116 °C</td>
<td>20 min</td>
<td>10%</td>
<td>0.12</td>
</tr>
<tr>
<td>116 °C</td>
<td>10 min</td>
<td>10%</td>
<td>0.09</td>
</tr>
<tr>
<td>109 °C</td>
<td>20 min</td>
<td>5%</td>
<td>0.18</td>
</tr>
<tr>
<td>109 °C</td>
<td>10 min</td>
<td>5%</td>
<td>0.19</td>
</tr>
<tr>
<td>116 °C</td>
<td>20 min</td>
<td>5%</td>
<td>0.19</td>
</tr>
<tr>
<td>116 °C</td>
<td>10 min</td>
<td>5%</td>
<td>0.21</td>
</tr>
</tbody>
</table>
Concentration of inhibitors of dilute-acid hydrolysate

Succinic acid production and consumption of total sugars

37°C
pH 7.5
30 gL⁻¹ MgCO₃
5 gL⁻¹ yeast extract
0.5 vvm CO₂
Yields of fermentations of dilute-acid hydrolysate

Organic acids yield (goa/gts) Succinic acid yield (gsa/gts)

109 °C, 20min, 10% 0.55 0.88 1.26
109 °C, 10min, 10% 0.55 0.94 1.17
116 °C, 20min, 10% 0.47 0.97 1.26
116 °C, 10min, 10% 0.51 0.88 1.20
109 °C, 20min, 5% 0.44 0.76 1.17
109 °C, 10min, 5% 0.44 0.77 1.04
116 °C, 20min, 5% 0.67 0.88 1.17
116 °C, 10min, 5% 0.77 0.88 1.04
Cellulase production

- Fermentation *T. reesei*
 - 28 °C, pH 5.5, 180 rpm
 - 40 g L$^{-1}$ wheat bran,
 - 10 g L$^{-1}$ avicel

![Graph showing FPU ml$^{-1}$ vs. Time [d]]
Succinic acid bio-production

<table>
<thead>
<tr>
<th>Raw material</th>
<th>Nitrogen source</th>
<th>Gas supply, Fermentation, Total volume, Working volume</th>
<th>Succinic acid (g/L)</th>
<th>Y (g<sub>SA</sub>/g<sub>in</sub>)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycerol</td>
<td>YE (10)</td>
<td>Anaerobic, fed-batch, bioreactor 2 L - 1.5 L</td>
<td>49.62</td>
<td>0.64</td>
<td>Carvalho et al., 2014</td>
</tr>
<tr>
<td>Wheat hydrolyzate</td>
<td>YE (5) / Vit</td>
<td>Anaerobic, batch, bioreactor 1.8 L, 0.5 L</td>
<td>62.1</td>
<td>1.02</td>
<td>Dorado et al., 2009</td>
</tr>
<tr>
<td>Bread hydrolyzate</td>
<td>BH (200 mg/L FAN)</td>
<td>Anaerobic, batch, bioreactor 2.5 L, n.d.</td>
<td>47.3</td>
<td>nk</td>
<td>Leung et al., 2012</td>
</tr>
<tr>
<td>Cotton stalk hydrolyzate</td>
<td>YE (30) / Urea (2)</td>
<td>Anaerobic, batch SSF, bottles 500 mL, n.d.</td>
<td>63</td>
<td>0.64</td>
<td>Li et al., 2013</td>
</tr>
<tr>
<td>Macroalgal hydrolyzate</td>
<td>YE (16.7)</td>
<td>Anaerobic, batch, bioreactor 3L, 1.5L</td>
<td>33.78</td>
<td>0.63</td>
<td>Morales et al., 2015</td>
</tr>
<tr>
<td>Rapeseed meal</td>
<td>YE (15)</td>
<td>Anaerobic, fed-batch SSF, bioreactor 3 L, 1.2 L</td>
<td>23.4</td>
<td>0.115</td>
<td>Chen et al., 2011</td>
</tr>
<tr>
<td>Whey</td>
<td>YE (5) / Pep (10)</td>
<td>Anaerobic, batch, bioreactor 2.5L, 1.2L</td>
<td>22.2</td>
<td>0.57</td>
<td>Wan et al., 2008</td>
</tr>
<tr>
<td>Acid hydrolysis of OPW</td>
<td>-</td>
<td>Anaerobic, batch (Fibrobacter succinogenes), serum bottles 125ml, 25ml</td>
<td>1.9</td>
<td>0.12</td>
<td>Li et al., 2010</td>
</tr>
<tr>
<td>Dilute-acid hydrolysis of OPW</td>
<td>YE (5)</td>
<td>Anaerobic, batch, bottles 100mL, 100mL</td>
<td>6.17 and 6.13</td>
<td>0.76 and 0.77</td>
<td>Current study</td>
</tr>
</tbody>
</table>
Conclusions

- **Elemental analysis on hydrolysates**
 - $\text{Mg}^{2+}, \text{Ca}^{2+}$

- **Dilute-acid hydrolysis conditions**
 - $109 \, ^\circ\text{C}, 20 \, \text{min}, 5\% \, (\text{w/w}), y=0.76 \, (g_{\text{sa}}/g_{\text{ts}})$
 - $116 \, ^\circ\text{C}, 10 \, \text{min}, 5\% \, (\text{w/w}), y=0.77 \, (g_{\text{sa}}/g_{\text{ts}})$

- **Cellulase production**
 - 5 days incubation
Future Work

- Ultrasound
 - Frequency
 - Duration

- Enzyme hydrolysis
 - Enzyme units
 - Duration
Thank you!