Production of endoxylanase from novel *Actinomadura geliboluensis* by using agricultural wastes

Ali Osman Adıgüzel, Münir TUNÇER

Mersin University, Department of Biology

CYPRUS 2016

4th International Conference on Sustainable Solid Waste Management

Suitable fermentation medium for endoxylanase production from A. geliboluensis

Figure. Time course of endoxylanase production from *A. geliboluensis* in MS-YEM, Horikoshi, ISP2 liquid, Nutrient Broth and Minimal Medium supplemented with 0.5% (w/v) birchwood xylan. Incubation was performed at 30 °C, 200 rpm.

Suitable carbon sources for endoxylanase production

Figure. Effect of different lignocellulosic carbon sources (5 g/L) such as lentil straw (LS), banana leaf (BL), barley straw (BS), wheat straw (WS), corn stover (CS), castor oil plant stalk (COPS) and pine needle (PN) on endoxylanase production from *A. geliboluensis* in MS-YEM. Incubation was performed at 30 °C, 200 rpm for 3 days.

Improvement of endoxylanase production from A. geliboluensis by using wheat straw as primary carbon source

Effect of particle size of wheat straw on endoxylanase production from A. geliboluensis

Figure. Effect of particle size of wheat straw (5 g/L) on endoxylanase production from *A. geliboluensis* in MS-YEM. Incubation was performed at 30 °C, 200 rpm for 3 days.

Effect of nitrogen sources on endoxylanase production from A. Geliboluensis by using wheat straw as primary carbon source

Figure. Effect of nitrogen sources on endoxylanase production from *A. geliboluensis* in MS-YEM supplemented with wheat straw. Incubation was performed at 30 °C, 200 rpm for 3 days. (ASP: asparagine, GLY: glycine, CS: casein, PT: peptone, YE: yeast extract, SM: soybean meal, UR: urea, GL: gelatin)

Effect of <u>temperature</u> and <u>initial pH of media</u> on endoxylanase production from A. Geliboluensis by using <u>wheat straw</u> as primary carbon source

Figure . Effect of temperature and initial pH of media on endoxylanase production from *A. geliboluensis* in MS-YEM. Incubation was performed at 30 °C, 200 rpm for 3 days.

Effect of <u>agitation</u> on endoxylanase production from A. Geliboluensis by using <u>wheat straw</u> as primary carbon source

Figure . Effect of agitation on endoxylanase production from *A. geliboluensis* in MS-YEM. Incubation was performed at 30 °C for 3 days. Initial media pH was 6.0

Improvement of endoxylanase production from A. geliboluensis by using <u>corn stover</u> as primary carbon source

Effect of <u>particle size</u> of <u>corn stover</u> on endoxylanase production from A. geliboluensis

Figure. Effect of particle size of corn stover (5 g/L) on endoxylanase production from *A. geliboluensis* in MS-YEM. Incubation was performed at 30 °C, 200 rpm for 3 days.

Effect of <u>nitrogen sources</u> on endoxylanase production from A. geliboluensis by using <u>corn stover</u> as primary carbon source

Figure. Effect of nitrogen sources on endoxylanase production from *A. geliboluensis* in MS-YEM supplemented with corn stover. Incubation was performed at 30 °C, 200 rpm for 3 days. (**ASP:** asparagine, **GLY:** glycine, **CS:** casein, **PT:** peptone, **YE:** yeast extract, **SM:** soybean meal, **UR:** urea, **GL:** gelatin)

Effect of <u>temperature</u> and <u>initial pH of media</u> on endoxylanase production from A. Geliboluensis by using <u>corn stover</u> as primary carbon source

Figure . Effect of temperature and initial pH of media on endoxylanase production from *A. geliboluensis* in MS-YEM. Incubation was performed at 30 °C, 200 rpm for 3 days.

Effect of <u>agitation</u> on endoxylanase production from A. Geliboluensis by using <u>corn stover</u> as primary carbon source

Figure. Effect of agitation on endoxylanase production from *A. geliboluensis* in MS-YEM. Incubation was performed at 30 °C for 3 days. Initial media pH was 7.0

Improvement of endoxylanase production from A. geliboluensis by using <u>castor oil plant</u> (Ricinus communis) as primary carbon source

Effect of <u>particle size</u> of <u>castor oil plant</u> on endoxylanase production from A. geliboluensis

Figure. Effect of particle size of castor oil plant (5 g/L) on endoxylanase production from *A. geliboluensis* in MS-YEM. Incubation was performed at 30 °C, 200 rpm for 3 days.

Effect of <u>nitrogen sources</u> on endoxylanase production from A. geliboluensis by using <u>castor oil plant</u> as primary carbon source

Figure. Effect of nitrogen sources on endoxylanase production from *A. geliboluensis* in MS-YEM supplemented with castor oil plant. Incubation was performed at 30 °C, 200 rpm for 3 days. (**ASP:** asparagine, **GLY:** glycine, **CS:** casein, **PT:** peptone, **YE:** yeast extract, **SM:** soybean meal, **UR:** urea, **GL:** gelatin)

Effect of <u>temperature</u> and <u>initial pH of media</u> on endoxylanase production from A. geliboluensis by using <u>castor oil plant</u> as primary carbon source

Figure . Effect of temperature and initial pH of media on endoxylanase production from *A. geliboluensis* in MS-YEM. Incubation was performed at 30 °C, 200 rpm for 3 days.

Effect of <u>agitation</u> on endoxylanase production from A. Geliboluensis by using <u>castor oil plant</u> as primary carbon source

Figure. Effect of agitation on endoxylanase production from *A. geliboluensis* in MS-YEM. Incubation was performed at 30 °C for 3 days. Initial media pH was 6.0

Extracellular protein profile of A. geliboluensis fermentation broths

Figure. SDS-PAGE profile of extracellular proteins in fermentation liquid after incubation of A. geliboluensis by using wheat straw (L1), corn stover (L2) and castor oil plant (L3) in MS-YEM. Moleculer marker (M) included carbonic anhydrase (29 kDa), egg albumin (45 kDa), bovine albumin (66 kDa), rabbit phosphorylase b (97.4 kDa) and β-galactosidase (116 kDa).

Zymogram analysis of A. geliboluensis fermentation broths

Figure. Native-PAGE and zymography of extracellular proteins in fermentation liquid after incubation of *A. geliboluensis* by using wheat straw (a₁: native PAGE, a₂: zymography), corn stover (b₁: native PAGE, b₂: zymography) and castor oil plant (c₁: native PAGE, c₂: zymography) in MS-YEM.