Recent Overview on Reuse and Biotransformation of Industrial Sludge into Organic Fertilizer through Vermicomposting

Presented by: Lee Leong Hwee
Date: 23rd June 2016
Outline of Content

1. Introduction
2. Formation of Industrial Sludge
3. Management of Industrial Sludge
4. Vermicomposting
5. Vermicomposting of Industrial Sludge
6. Conclusion
7. References
1. Introduction
• Industrial sludge is one of the main by-products produced from the treatment of industrial wastewater

• Solid or semi-solid material, consisting of
 - Compounds removed from the wastewater
 - Substances added into the chemical and biological operation units
• Contains a lot of contaminants:
 ➢ Organic
 ➢ Inorganic
 ➢ Chemicals
 ➢ Microbial pollutants

• Composition may vary considerably, depending on the treatment processes

• Processing and disposal of sludge is challenging and complex
2. Formation of Industrial Sludge
• Industrial sludge is the settleable by-products generated from different treatment stages

• Can be classified into:
 ➢ Primary sludge
 ➢ Secondary sludge
 ➢ Activated sludge
 ➢ Chemical sludge

Fig 1 Sludge generation points of typical wastewater treatment scheme (Turovskiy and Mathai, 2006)
Primary sludge
- Produced from the primary treatment
- Grey in colour, strongly odorous, high percentage of organic matters
- Solid content: 2–7%

Secondary sludge
- Produced from the secondary treatment (biological treatment)
- Brownish, consisted of biological solids and biomass produced by the microorganisms, inert materials
- Solid content: 6-8%
- **Activated sludge**
 - Produced from activated sludge process in the secondary treatment system
 - Dark grey or dark brown in colour, flocculent appearance
 - Made up of a mass of microorganisms, inert materials, non-biodegradable suspended solids
 - Solid content: 0.4-1.5%

- **Chemical sludge**
 - Produced from the chemical treatment
 - Chemicals are used to remove and precipitate solids, improve sedimentation processes
 - Darker in colour, low dewatering characteristics
3. Management of Industrial Sludge
Three most common disposal methods

1. Incineration
2. Landfilling
3. Land application
Land Application

• Convenient and economic disposal alternatives

• More preferable
 ➢ Valuable source of nutrients
 ➢ Contains high organic matter content

• Reduce the use or inorganic fertilizer

• Recycling and reuse of waste are preferred for sustainable development
Problems and Issues

• Presence of pollutants and contaminants
 ➢ Threaten soil quality and crop yield
 ➢ Contaminate human food chain

• Uncontrolled application can cause
 ➢ Overfertilization
 ➢ Ammonia toxicity
 ➢ Accumulation of heavy metals in soil
 ➢ Increase soil alkalinity
 ➢ Ground water pollution
Possible way of reusing industrial sludge

• Integrating with other treatment and stabilization processes
 ➢ Volume reduction
 ➢ Odor control
 ➢ Pathogen and toxic compounds removal
Current treatment methods

• Comprises of few stages:
 ➢ Thickening – remove moisture to reduce sludge volume
 ➢ Pre-treatment or conditioning – alter the characteristics of sludge to enhance performance
 ➢ Post-treatment – stabilize and detoxificate the sludge
 ➢ Dewatering – remove all the water
4. Vermicomposting
Vermicomposting

- Natural conversion of biodegradable waste into organic fertilizer (Lim et al., 2016)
Advantages of vermicomposting process (Singh et al., 2011):
• Short Processing time
• High nutrients recovery

Benefits of vermicompost (Sim and Wu, 2010):
• Rich in nutrients
• Improve soil texture
• Improve plant growth
5. Vermicomposting of Industrial Sludge
Vermicomposting of Industrial Sludge

<table>
<thead>
<tr>
<th>Sludge</th>
<th>Amendments</th>
<th>Earthworm</th>
<th>Observation</th>
<th>Ref</th>
</tr>
</thead>
</table>
| Paper-mill sludge | Totato-plant debris | E. fetida | - 2:1 mixture ratio of tomato-plant debris and sludge
 - Higher proportion of tomato-plant debris showed higher amount of humic acid | Fernández-Gómez et al., 2013 |
| Pulp and paper mill sludge | Cow dung, food processing waste | P. excavatus | - Total phosphorus increase (76.1%)
 - Total nitrogen increase (58.7%)
 - Total organic carbon decrease (74.5 %) | Sonow al et al., 2013 |
Vermicomposting of Industrial Sludge (Continued…)

<table>
<thead>
<tr>
<th>Sludge</th>
<th>Amendments</th>
<th>Earthworm</th>
<th>Observation</th>
<th>Ref</th>
</tr>
</thead>
</table>
| Pressmud sludge | Cow dung, Jeevamirtham Azospirillum | E. eugeniae | - Increased in nitrogen, phosphorus and potassium content
- Decreased in organic carbon and C:N ratio | Vasant hi et al., 2014 |
| Pressmud sludge | Cow dung | E. fetida | - Increased in nitrogen, phosphorus, sodium, electrical conductivity and pH
- Decreased in C:N ratio and potassium | Bhat et al., 2014 |
<table>
<thead>
<tr>
<th>Sludge</th>
<th>Amendments</th>
<th>Earthworm</th>
<th>Observation</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakery industry sludge</td>
<td>Cow dung</td>
<td>E. fetida</td>
<td>- Increased in growth and reproduction of the earthworms</td>
<td>Yadav et al., 2015</td>
</tr>
<tr>
<td>Food industry sludge</td>
<td>Cow dung, poultry droppings, biogas plant slurry</td>
<td>E. fetida</td>
<td>- Increased in earthworms biomass</td>
<td>Garg et al., 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Increased in total nitrogen, total available phosphorus, total sodium and total potassium</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Decreased in C:N ratio and pH</td>
<td></td>
</tr>
</tbody>
</table>
6. Conclusion
• Earthworms are able to remove harmful pathogens, ingest heavy metals and mineralize nitrogen and phosphorus
• Vermicompost has high content of organic matter and nutrients
• Vermicomposting can be used to manage various type of industrial sludge
7. References
References

References

THANK YOU