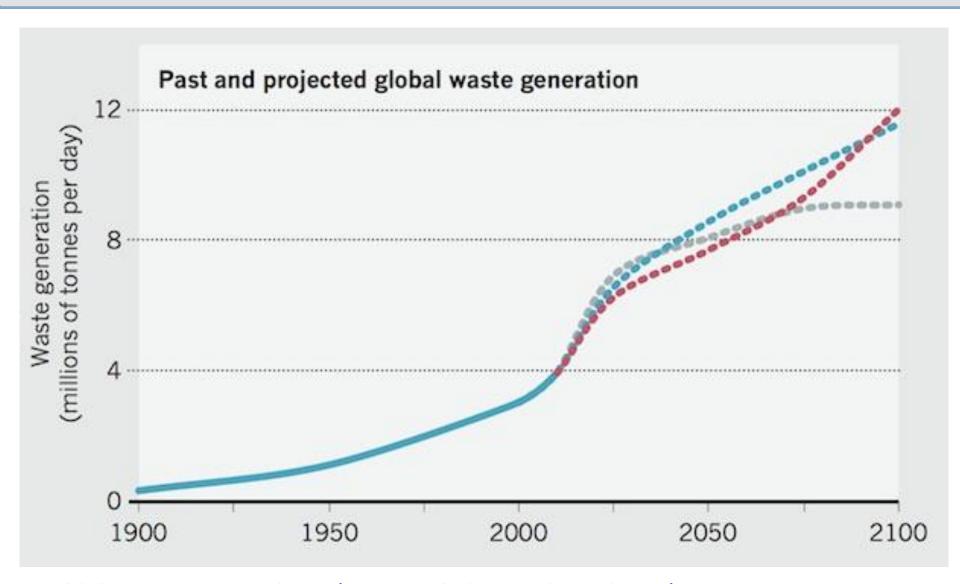


23-25 June 2016 Limassol, Cyprus

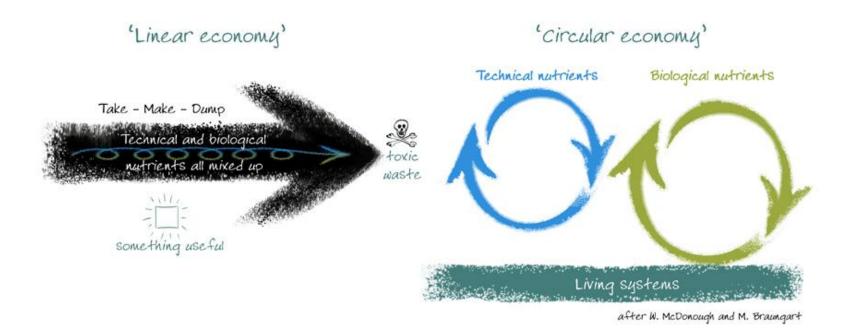
Innovation in waste processing to achieve circularity Engineering the Circular Economy

Christopher Cheeseman


Professor of Materials Resources Engineering
Environmental and Water Resources Engineering
Department of Civil and Environmental Engineering
Imperial College London

Head, WTERT-UK

CYPRUS 2016


4th International Conference on Sustainable Solid Waste Management

Global Waste Generation

Global waste generation predictions (Hoornweg, Bhada-Tata and Kennedy, 2013)

Linear vs circular economy

How do we get there?

Resource

Waste Circular economy

Research
Materials science and processing

The best opportunities need research to make them happen......

The circular economy:

an opportunity worth in excess of 1 trillion US\$ for the global economy

McKinsey & Company

Engineering the Circular Economy

Examples of five wonderful materials that are regarded as problematic wastes and our efforts to make them part of a circular economy.......

Innovation in waste processing to achieve circularity

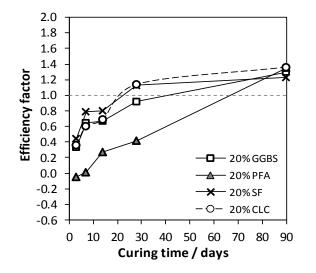
1. London clay

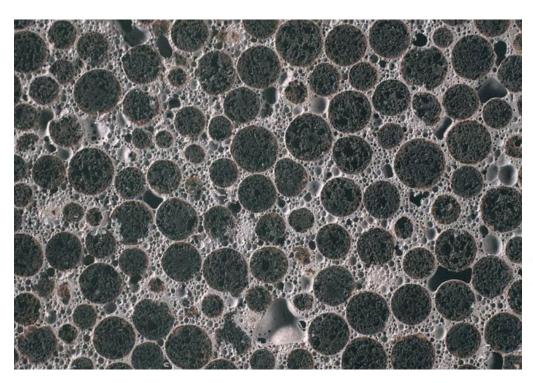
Tunnelling spoil into cementitious materials

Supplementary cementitious materials

Potential to use London clay as the raw material to produce SCMs

Product to replace with GGBFS and coal fly ash as cement replacement materials


Manufacture an engineered pozzolanic material from wastes


w/b = 0.4

Lightweight aggregate/supplementary cementitious materials development project

Lightweight aggregate applications

Lightweight precast concrete products
Structural lightweight concrete

Lightweight fill material
Medium for water filtration
Landscaping and drainage
Agricultural and horticultural applications

Lightweight aggregate/supplementary cementitious materials development project

Pilot plant trials

London clay, dried, calcined at 900°C in a rotary kiln, ground to form an engineered SCM Blended with CEM I to form a pozzolanic cement (EN 197-1, a Type IV cement)

Mixed with glass and other materials to produce lightweight aggregate

2. Disposable cups

Disposable cups into reinforced plastics

3. Waste glass

Paper, plastics, metals, glass

Waste glass into engineered absorbent granules

Incorporating phase change materials (PCMs)

4. Incinerator residues

Energy from waste

Waste-to-Energy in Europe in 2013

 Waste-to-Energy Plants operating in Europe (not including hazardous waste incineration plants)

Waste thermally treated in Waste-to-Energy plants

in million tonnes

Data supplied by CEWEP members unless specified otherwise From EUROSTAT

** Includes plant in Andorra

info@cewep.eu > www.cewep.eu

Portugal Spain** 11 2.1

Ireland

26

16 1.6 Estonia Sweden 1 0,18 Latvia Denmark Lithuania 27 3 3 1 0.15 22 United Kingdom Poland Netherlands 1 0.04 12 7.5 Germany 81 21.9 Belgium Czech Republic 18 3.5 Luxembourg* 3 0.6 Slovakia* 1 0.13 Austria 2 0.17 France 13 2.9 Switzerland Hungary 127 14.5 Slovenia* 1 0.36 Romania 30 3.8 1 0.004 **M**Croatia Bulgaria

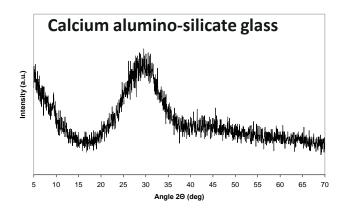
Norway

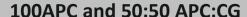
Finland

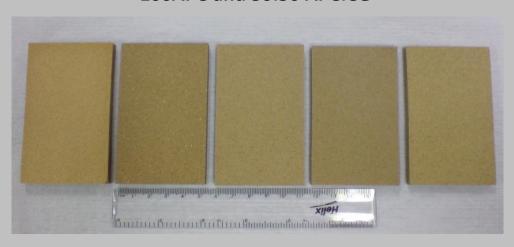
6 0.82

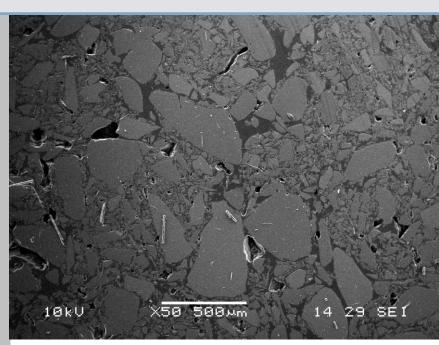
Incinerator bottom ash as a sustainable source of raw materials

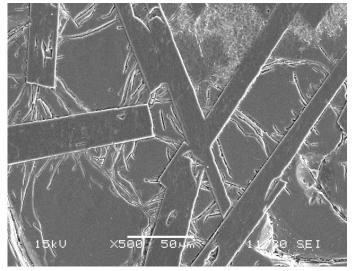
Properties of sintered IBA glass-ceramics


Mechanical property	Sintered ceramics	Clay ceramics
Density (g/cm³)	2.7	2.3
Young's modulus (GPa)	76.2	71
3-point bending strength (MPa)	80.9	78.2
Vickers microhardness (GPa)	4.4	3.1
Thermal conductivity (W/m*K)	0.6	0.6


Air Pollution Control residues





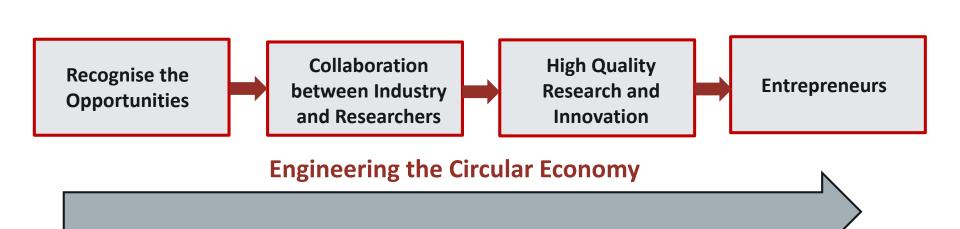

APC residue plasmaroc sintered glass-ceramics

5. Paper sludge ash

Paper sludge ash into hydrophobic powder

Hydrophobic concrete using waste paper sludge ash

Hong S. Wong *, Robert Barakat, Abdulla Alhilali, Mohamed Saleh, Christopher R. Cheeseman


We have to move to a circular economy

Wastes are materials with huge potential for innovation.....

Collaboration between industry and researchers

High quality research and development/innovation

New breed of circular economy entrepreneurs to make it happen......

One planet.....

Use of science and engineering to deliver *Innovation in Waste Processing* for a circular economy

Engineering the Circular Economy

Innovation in waste processing to achieve circularity

Christopher Cheeseman

c.cheeseman@imperial.ac.uk

Professor of Materials Resources Engineering

Environmental and Water Resources Engineering Department of Civil and Environmental Engineering Imperial College London

CYPRUS 2016

4th International Conference on Sustainable Solid Waste Management