Composting of brewery sludge mixed with different bulking agents

E. Kalatzi^{1,2}, E. Sazakli², H.K. Karapanagioti¹ and M. Leotsinidis²

¹ Department of Chemistry, University of Patras, Patras, GR-26504, Greece ² Lab of Public Health, School of Medicine, University of Patras, Patras, GR-26504, Greece

Introduction

Re-use of waste is the key for sustainable development

- Sludge is NOT a waste
- It is rather a source of nutrients
- Composting: one of the most promising technologies allowing recycling of biosolids

Why brewery sludge?

- ✓ Solid-waste disposal problem and management
- ✓ European Directives 2006/799/EC and 2007/799/EC

Composting requires

- ✓ Biosolids
- ✓ Bulking agents

Purpose

Composting of brewery sludge with three different bulking agents

Parameters

- Temperature
- Moisture
- pH
- Conductivity
- Volatile solids
- Organic Nitrogen
- Carbon to nitrogen ratio
- Total phosphorus
- Metals
- Microbiological quality

Composting Stages

Composting set-up

• 3 co-composting materials — lignite

sawdust

dried shredded grass

- Temperature measurement three times per week
- Agitation once per week
- Sampling once per week before agitation

Location ...

Greenhouse of University of Patras

Sludge + lignite

Sludge + sawdust

Sludge + shredded grass

Results

Temperature

Moisture

pН

Electrical conductivity

Composts	Final Values (mS/cm)		
Grass mixture	3.3		
Lignite mixture	1.8		
Sawdust mixture	1.1		

Volatile Solids

Organic nitrogen

C/N ratio

C/N ratio → stable at 10:1
(during the whole process)

According to bibliography initial optimum ratio
30:1

Total Phosphorus

Metals

	Final compost (mg kg ⁻¹ DM)		Legislative guidelines ^a	
Elements	Lignite	Sawdust	Dried grass	(mg kg⁻¹ DM)
Cd	0.14	<0.02	<0.02	1
Pb	7.5	8.9	7.6	100
Cr	110	56.3	52.7	100
Ni	377	60.3	32.5	<i>50</i>
As	43.3	3.1	3.2	10
Cu	56.2	54.0	74.5	100
Zn	93.5	35.6	126	300
Со	23.6	14.3	11.2	-
Mn	672	591	479	<u>-</u>
Fe	23800	19000	14800	-
Na	2980	3520	6710	-
K	6440	7040	8790	-
Ca	11600	17900	19800	-

a: CMgnission Delise002006/799/6630d C(2006) 6956000 Label to soil improvers and growing media,

Microbiological quality

Pathogen	Lignite	Sawdust	Dried grass	2006/799/EC
E. coli (CFU g ⁻¹ dw)	483	1291	68	1000
Salmonella (CFU per 25 g dw)	absence	absence	absence	absence
Enterococci (CFU g ⁻¹ dw)	57	459	2411	-
Clostridia (CFU g ⁻¹ dw)	352	0	221	-

Conclusions

- ✓ Mixtures with dried grass and sawdust yielded composts of acceptable quality for specific uses, such as soil remediation
- ✓ Lignite was considered as an inappropriate bulking agent due to high metals concentrations measured in the final product
- ✓ The most promising, suitable and low cost bulking agent was the dried shredded grass
- ✓ Co-composting of brewery sludge with lower than optimum initial C/N ratios is feasible and allows the minimization of the required amount of bulking agent, if composting aims at solving the sludge disposal problem
- ✓ Final products were categorized as Class B. Characterization of Class A will be feasible, by constructing bigger piles and thus, achieving higher temperatures during composting

Thank you!!!

