

No Compromise on Quality is Critical to Solid Recovered Fuel Production in Cyprus

Professor Stephen R Smith, Department of Civil and Environmental Engineering Dr Iakovos Skourides, Vassiliko Cement Works

Building a better future

The Challenge

Meeting European Environmental Targets

Waste Framework Directive Recycling Target
Landfill Directive Biodegradable Waste Diversion Target
Renewable Energy Directive Target

Identifying Cost Effective and Sustainable Solutions for Waste

AD and composting options – poor residue quality issues
Building a thermal treatment plant is a major barrier
High quality and consistent fuels are required by industrial thermal processes like cement production

The Opportunity

- Municipal Solid Waste is an indigenous fuel source to the island
- A major thermal conversion industry is available on the Island (Vassiliko Cement Works Ltd)
- Major investments in new advanced technologies and alternative fuel handling systems
- Significant fossil fuel substitution
- Significant demand for Solid Recovered Fuel (SRF) as an auxiliary fuel
- Rates of substitution increase with fuel quality
- 30-40% or higher substitution rates are possible
- Could represent a bulk market for 110,000 t SRF

Advantages and Disadvantages of MBT \longrightarrow SRF

<u>Advantages</u>

- 100% participation rate
- Captures all recoverable value
- Established technologies
- Control over product outputs through advanced biodrying and separation technologies
- Minimises landfill disposal (a zero rate is achievable)
- Simple bin and collection systems
- Flexible and adaptive to future demands
- Does not compete with other recycling schemes

Disadvantages

- Mixed waste treatment favoured less than source separation
- Negative public perception towards waste processing facilities
- Markets and quality are critical for fuel and other outputs

Shanks MBT - Frog Island, East London, 180,000 t/y MSW

Average ELWA SRF Analysis

- Waste origin = 97% MSW, 3% commercial
- 85% of material
- 'Other'
- Material shred size
- Particle Size <50mm
- Energy potential (CV)
- Moisture content
- Ash content
- Chlorine
- Delivery method
- End use
- Production potential

- = paper, card, plastics & textiles
- misc combustibles, ferrous & non-ferrous, putrescible
- = 50mm (variable according to offtake market requirements)
- = 98% (VCW PSD <35mm)
- = 17.0MJ/kg (net CV) (VCW <16 MJ/kg)
- = 16.9% (VCW <18%)
- = 7% (VCW <15%)
- = 0.41% (VCW < 0.8%)
- compacted & loose loaded on trailers for road haulage
- = pre-heating, cement kiln precalciner
- = 27.5% of input, by weight

MBT Mass Balance

		Frog Island,		Jenkins Lane,				
		Target		June 2014		Cumbria 2014/15		Comment
Route	Outputs	t	%	t	%	t	%	
Diversion	SRF/RDF	115,679	64.3%	6,756	45.7%	55814	48.8%	Used as alternative fuel in cement production and in efw plant
Diversion	Moisture	52,380	29.1%	5,007	33.9%	31612	27.7%	Evaporative losses
Recycling	Mixed Metals	3,827	2.1%	283	1.9%	2622	2.3%	Recycled through the scrap metal industry
Recycling	Glass & Stone	1,776	1.0%	229	1.5%	8763	7.7%	Used as aggregate in road building
Recycling	Fines (0 - 6mm)	6,138	3.4%	91	0.6%	8518	7.5%	restoration
Landfill	Dust	200	0.1%	0	0.0%))		Extracted from refinement air treatment
Landfill	Fines (0 - 6mm)			548	3.7%	6882	6.0%	
Landfill	RDF			1,872	12.7%))		
	Total Input t	179,800	100.0%	14,787	100.0%	114,211	100%	
	<u>Summary</u>							
	Diversion		93.3%		79.6%		76.5%	
	Recycling		6.%		4.1%		17.5%	
	Landfill		0.10%		16.4%		6.0%	
	Total		100%		100%		100%	

Imperial College London Rotary Biodrying Research with Vassiliko Cement Works, Cyprus

- •Metabolic heat removes water from biodegradable waste
- •Critical control of microbial activity at low moisture
- •Optimised rotation, aeration and temperature management
- Minimises drying time: <3 days
- Small plant foot print, reduced capital and operating costs
 Maximises calorific value, fuel
- Naximises calorine value, ruer
 homogeneity and recyclate recovery
 Direct combustion or pretreatment in advanced thermal treatment
- (gasification)
- Local developed technology

© Imperial College London

Imperial College London Rotary Biodrying Technology Can Reduce Processing Time to ≤3 Days and Increase Fuel Properties and Consistency

Vassiliko Cement Works at a Glance

• Established in 1963

- First production in 1967
- 2nd Lepol Kiln line in 1969
- 3rd Lepol Kiln line in 1975
- 4th Lepol Kiln line in 1985
- New BAD 2-string 5 stage Pre-Calciner Kiln 2011
- State of the art feeding system for alternative fuels 2014-2016

Cement Plant

- Location
- Raw materials
- Kiln capacity Europe
- Grinding capacity
- Other infrastructure

- : Vassiliko, Cyprus
- : Main quarry 7 km from plant
- : 2 m tpa clinker the biggest cement kiln in
- : 2,4 m tpa cement
- : Vassiliko port

Building a better future

Push floor feeding bin for RDF

Building a better future

2.6 Photo – Chopped Tyres Push Floor Feeding Bin

Building a better future

Push floor feeding of chopped tyres to screw feed

Building a better future

Alternative fuel and raw material delivery and supply system

Building a better future

Debaling and Drum screening for imported baled RDF/SRF

Building a better future

Tubular 'pipe' belt conveyor transporting from Debaler over to Feed Bins

Building a better future

Important quality criteria for SRF used in cement kilns

- CI content: CI can cause build up formation in static combustion chambers (calciner) restricting gassflow.
- Ash content: ash is incorporated in the product of the kiln as raw material. Clinker reactivity can be affected.
- Moisture content: Causes expansion in cement kiln gasses and increased power consumption. It also affects the combustion profile and transport of the material to the kiln.
- Particle size: the smallest the better. Combustion of coarse material is slow and the retention time in the calciner may not be adequate for complete combustion.
- NOx emissions increase with increasing particle size and moisture of SRF.
- Calorific value: Always related to CI content and ash content. Using SRF with high calorific value reduces CI and ash input for a specific thermal substitution.
- Homogeneity: The most important parameter for smooth kiln operation. Variable moisture, calorific value, particle size etc cause fluctuations in cement kiln temperatures with detrimental effects on product quality.

SRF utilization at Vassiliko Cement Works

- Test with compost like output (CLO) from Larnaka MBT plant were performed on 2014-2015.
- CLO was fed to the calciner for a period of 6 months
- Thermal substitution of 5 % was hardly reached with more than 100 tns utilized on a daily basis. There was negative impact on clinker quality and process performance.
- Since 2015, high quality SRF is imported from abroad.
- Currently, more than 300 tns of SRF is utilized on a daily basis equivalent to approximately 30 % thermal substitution.
- Successful tests has been carried out with more than 400 tns of SRF fed to the kiln on a daily basis.

Effect of AF utilization on NOx baseline emissions

DSS- MBM co-ground, TDF-RDF pre-blended

Building a better future

Effect of AF utilization on Specific Electrical Energy Consumption (SEEC)

Imperial College London

Conclusions

- High diversion and recovery rates can be achieved close to 100%
- Captures all the residual value in waste
- Compatible with recycling systems
- A significant and committed end user is available for fuel products in Cyprus
- Critical fuel production processes and quality control to a specification (moisture, chemical composition) are necessary and achievable
- The technology combination is a great opportunity for Cyprus and would be a major lost opportunity if not taken forward